Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borel factors and embeddings of systems in subshifts (2203.09359v1)

Published 17 Mar 2022 in math.DS, math.CO, and math.LO

Abstract: In this paper we study the combinatorics of free Borel actions of the group $\mathbb Zd$ on Polish spaces. Building upon recent work by Chandgotia and Meyerovitch, we introduce property $F$ on $\mathbb Zd$-shift spaces $X$ under which there is an equivariant map from any free Borel action to the free part of $X$. Under further entropic assumptions, we prove that any subshift $Y$ (modulo the periodic points) can be Borel embedded into $X$. Several examples satisfy property $F$ including, but not limited to, the space of proper $3$-colourings, tilings by rectangles (under a natural arithmetic condition), proper $2d$-edge colourings of $\mathbb Zd$ and the space of bi-infinite Hamiltonian paths. This answers questions raised by Seward, and Gao-Jackson, and recovers a result by Weilacher and some results announced by Gao-Jackson-Krohne-Seward.

Summary

We haven't generated a summary for this paper yet.