Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Context-Dependent Anomaly Detection with Knowledge Graph Embedding Models (2203.09354v2)

Published 17 Mar 2022 in cs.LG and cs.AI

Abstract: Increasing the semantic understanding and contextual awareness of machine learning models is important for improving robustness and reducing susceptibility to data shifts. In this work, we leverage contextual awareness for the anomaly detection problem. Although graphed-based anomaly detection has been widely studied, context-dependent anomaly detection is an open problem and without much current research. We develop a general framework for converting a context-dependent anomaly detection problem to a link prediction problem, allowing well-established techniques from this domain to be applied. We implement a system based on our framework that utilizes knowledge graph embedding models and demonstrates the ability to detect outliers using context provided by a semantic knowledge base. We show that our method can detect context-dependent anomalies with a high degree of accuracy and show that current object detectors can detect enough classes to provide the needed context for good performance within our example domain.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.