Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encrypted Operator Computing: a novel scheme for computation on encrypted data (2203.08876v2)

Published 16 Mar 2022 in cs.CR

Abstract: We introduce a new approach to computation on encrypted data -- Encrypted Operator Computing (EOC) -- as an alternative to Fully Homomorphic Encryption (FHE). Given a plaintext vector $|{x}\rangle$, $x\in {0,1}n$, and a function $F(x)$ represented as an operator $\hat F$, $\hat F\;|{x}\rangle = |{F(x)}\rangle$, the EOC scheme is based on obfuscating the conjugated operator (circuit) $\hat{F}E = \hat E\;\hat F\;\hat{E}{-1}$ that implements computation on encrypted data, $\hat E |{x}\rangle$. The construction of EOC hinges on the existence of a two-stage NC$1$ reversible-circuit-based IND-CCA2 cipher $\hat{E} = \hat{N} \hat{L}$, where $\hat{L}$ and $\hat{N}$ represent, respectively, linear and non-linear NC$1$ tree-structured circuits of 3-bit reversible gates. We make and motivate security assumptions about such a NC$1$ cipher. Furthermore, we establish the polynomial complexity of the obfuscated circuit, the evaluator $O(\hat{F}E)$, by proving that: (a) conjugation of each gate of $F$ with $\hat{L}$ yields a polynomial number of gates; and (b) the subsequent conjugation with $\hat{N}$ yields a polynomial number of ``chips,'' $n$-input/$n$-output reversible functions, with outputs expressed as polynomial-sized ordered Binary Decision Diagrams (OBDDs). The security of individual chips is connected to the notion of Best Possible Obfuscators which relies on poly-size OBDDs and the fact that OBDDs are normal forms that expose the functionality but hide the gate implementation of the chip. We conjecture that the addition of random pairs of NOTs between layers of $\hat{N}$ during the construction of $FE$, a device analogous to the AddRoundKey rounds of AES, ensures the security of the the evaluator. We also present a generalization to asymmetric encryption.

Citations (1)

Summary

We haven't generated a summary for this paper yet.