Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural-Network-Directed Genetic Programmer for Discovery of Governing Equations (2203.08808v1)

Published 15 Mar 2022 in cs.NE and cs.LG

Abstract: We develop a symbolic regression framework for extracting the governing mathematical expressions from observed data. The evolutionary approach, faiGP, is designed to leverage the properties of a function algebra that have been encoded into a grammar, providing a theoretical guarantee of universal approximation and a way to minimize bloat. In this framework, the choice of operators of the grammar may be informed by a physical theory or symmetry considerations. Since there is currently no theory that can derive the 'constants of nature', an empirical investigation on extracting these coefficients from an evolutionary process is of methodological interest. We quantify the impact of different types of regularizers, including a diversity metric adapted from studies of the transcriptome and a complexity measure, on the performance of the framework. Our implementation, which leverages neural networks and a genetic programmer, generates non-trivial symbolically equivalent expressions ("Ramanujan expressions") or approximations with potentially interesting numerical applications. To illustrate the framework, a model of ligand-receptor binding kinetics, including an account of gene regulation by transcription factors, and a model of the regulatory range of the cistrome from omics data are presented. This study has important implications on the development of data-driven methodologies for the discovery of governing equations in experimental data derived from new sensing systems and high-throughput screening technologies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.