Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Where To Look -- Generative NAS is Surprisingly Efficient (2203.08734v2)

Published 16 Mar 2022 in cs.LG and cs.CV

Abstract: The efficient, automated search for well-performing neural architectures (NAS) has drawn increasing attention in the recent past. Thereby, the predominant research objective is to reduce the necessity of costly evaluations of neural architectures while efficiently exploring large search spaces. To this aim, surrogate models embed architectures in a latent space and predict their performance, while generative models for neural architectures enable optimization-based search within the latent space the generator draws from. Both, surrogate and generative models, have the aim of facilitating query-efficient search in a well-structured latent space. In this paper, we further improve the trade-off between query-efficiency and promising architecture generation by leveraging advantages from both, efficient surrogate models and generative design. To this end, we propose a generative model, paired with a surrogate predictor, that iteratively learns to generate samples from increasingly promising latent subspaces. This approach leads to very effective and efficient architecture search, while keeping the query amount low. In addition, our approach allows in a straightforward manner to jointly optimize for multiple objectives such as accuracy and hardware latency. We show the benefit of this approach not only w.r.t. the optimization of architectures for highest classification accuracy but also in the context of hardware constraints and outperform state-of-the-art methods on several NAS benchmarks for single and multiple objectives. We also achieve state-of-the-art performance on ImageNet. The code is available at http://github.com/jovitalukasik/AG-Net .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jovita Lukasik (13 papers)
  2. Steffen Jung (13 papers)
  3. Margret Keuper (77 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com