Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum graphs: different perspectives, homomorphisms and quantum automorphisms (2203.08716v3)

Published 16 Mar 2022 in math.OA and math.QA

Abstract: We undertake a study of the notion of a quantum graph over arbitrary finite-dimensional $C*$-algebras $B$ equipped with arbitrary faithful states. Quantum graphs are realised principally as either certain operators on $L2(B)$, the quantum adjacency matrices, or as certain operator bimodules over $B'$. We present a simple, purely algebraic approach to proving equivalence between these settings, thus recovering existing results in the tracial state setting. For non-tracial states, our approach naturally suggests a generalisation of the operator bimodule definition, which takes account of (some aspect of) the modular automorphism group of the state. Furthermore, we show that each such non-tracial'' quantum graphs corresponds to atracial'' quantum graph which satisfies an extra symmetry condition. We study homomorphisms (or CP-morphisms) of quantum graphs arising from UCP maps, and the closely related examples of quantum graphs constructed from UCP maps. We show that these constructions satisfy automatic bimodule properties. We study quantum automorphisms of quantum graphs, give a definition of what it means for a compact quantum group to act on an operator bimodule, and prove an equivalence between this definition, and the usual notion defined using a quantum adjacency matrix. We strive to give a relatively self-contained, elementary, account, in the hope this will be of use to other researchers in the field.

Summary

We haven't generated a summary for this paper yet.