Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Long Sequence Encoding via Synchronization (2203.07644v1)

Published 15 Mar 2022 in cs.CL

Abstract: Pre-trained Transformer models have achieved successes in a wide range of NLP tasks, but are inefficient when dealing with long input sequences. Existing studies try to overcome this challenge via segmenting the long sequence followed by hierarchical encoding or post-hoc aggregation. We propose a synchronization mechanism for hierarchical encoding. Our approach first identifies anchor tokens across segments and groups them by their roles in the original input sequence. Then inside Transformer layer, anchor embeddings are synchronized within their group via a self-attention module. Our approach is a general framework with sufficient flexibility -- when adapted to a new task, it is easy to be enhanced with the task-specific anchor definitions. Experiments on two representative tasks with different types of long input texts, NarrativeQA summary setting and wild multi-hop reasoning from HotpotQA, demonstrate that our approach is able to improve the global information exchange among segments while maintaining efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiangyang Mou (8 papers)
  2. Mo Yu (117 papers)
  3. Bingsheng Yao (49 papers)
  4. Lifu Huang (92 papers)