Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear Systems Induced by Proper Lie Group Actions (2203.07483v1)

Published 14 Mar 2022 in eess.SY and cs.SY

Abstract: In the study of induced bilinear systems, the classical Lie algebra rank condition (LARC) is known to be impractical since it requires computing the rank everywhere. On the other hand, the transitive Lie algebra condition, while more commonly used, relies on the classification of transitive Lie algebras, which is elusive except for few simple geometric objects such as spheres. We prove in this note that for bilinear systems induced by proper Lie group actions, the underlying Lie algebra is closely related to the orbits of the group action. Knowing the pattern of the Lie algebra rank over the manifold, we show that the LARC can be relaxed so that it suffices to check the rank at an arbitrary single point. Moreover, it removes the necessity for classifying transitive Lie algebras. Finally, this relaxed rank condition also leads to a characterization of controllable submanifolds by orbits.

Summary

We haven't generated a summary for this paper yet.