Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A singularly perturbed fractional Kirchhoff problem (2203.07464v1)

Published 14 Mar 2022 in math.AP and math.CA

Abstract: In this paper, we first establish the uniqueness and non-degeneracy of positive solutions to the fractional Kirchhoff problem \begin{equation*} \Big(a+b{\int_{\mathbb{R}{N}}}|(-\Delta){\frac{s}{2}}u|2dx\Big)(-\Delta)su+mu=|u|{p-2}u,\quad \text{in}\ \mathbb{R}{N}, \end{equation*} where $a,b,m>0$, $0<\frac{N}{4}<s\<1$, $2<p\<2^*_s=\frac{2N}{N-2s}$ and $(-\Delta )^s$ is the fractional Laplacian. Then, combining this non-degeneracy result and Lyapunov-Schmidt reduction method, we derive the existence of semiclassical solutions to the singularly perturbation problem \begin{equation*} \Big(\varepsilon^{2s}a+\varepsilon^{4s-N} b{\int_{\mathbb{R}^{N}}}|(-\Delta)^{\frac{s}{2}}u|^2dx\Big)(-\Delta)^su+V(x)u=|u|^{p-2}u,\quad \text{in}\ \mathbb{R}^{N}, \end{equation*} for $\varepsilon> 0$ sufficiently small and a potential function $V$.

Summary

We haven't generated a summary for this paper yet.