Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matching and maximum likelihood decoding of a multi-round subsystem quantum error correction experiment (2203.07205v2)

Published 14 Mar 2022 in quant-ph

Abstract: Quantum error correction offers a promising path for performing quantum computations with low errors. Although a fully fault-tolerant execution of a quantum algorithm remains unrealized, recent experimental developments, along with improvements in control electronics, are enabling increasingly advanced demonstrations of the necessary operations for applying quantum error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. The full processor can encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow the correction of any single fault in the circuitry. Furthermore, by using dynamic circuits and classical computation as part of our syndrome extraction protocols, we can exploit real-time feedback to reduce the impact of energy relaxation error in the syndrome and flag qubits. We show that the logical error varies depending on the use of a perfect matching decoder compared to a maximum likelihood decoder. We observe a logical error per syndrome measurement round as low as $\sim0.04$ for the matching decoder and as low as $\sim0.03$ for the maximum likelihood decoder. Our results suggest that more significant improvements to decoders are likely on the horizon as quantum hardware has reached a new stage of development towards fully fault-tolerant operations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95 (2005).
  2. H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006).
  3. C. Chamberland, P. Iyer, and D. Poulin, Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics, Quantum 2, 43 (2018).
  4. D. P. DiVincenzo and P. Aliferis, Effective fault-tolerant quantum computation with slow measurements, Phys. Rev. Lett. 98, 020501 (2007).
  5. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Physical Review A 73, 012340 (2006).
  6. L. P. Pryadko, On maximum-likelihood decoding with circuit-level errors, Quantum 4, 304 (2020).
  7. S. Bravyi, M. Suchara, and A. Vargo, Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code, Physical Review A 90, 032326 (2014), arXiv:1405.4883 .
  8. D. Gottesman, The heisenberg representation of quantum computers, arXiv preprint quant-ph/9807006  (1998).
  9. A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Towards practical classical processing for the surface code, Phys. Rev. Lett. .
  10. O. Higgott, PyMatching: A Python package for decoding quantum codes with minimum-weight perfect matching, arXiv:2105.13082 [quant-ph]  (2021), arXiv:2105.13082 [quant-ph] .
  11. A. Dua, T. Jochym-O’Connor, and G. Zhu, Quantum error correction with fractal topological codes, arXiv:2201.03568  (2022).
  12. S. Bravyi and A. Cross, Doubled Color Codes, arXiv:1509.03239 [quant-ph]  (2015), arXiv:1509.03239 [quant-ph] .
  13. B. Heim, K. M. Svore, and M. B. Hastings, Optimal Circuit-Level Decoding for Surface Codes, arXiv:1609.06373 [quant-ph]  (2016), arXiv:1609.06373 [quant-ph] .
  14. IBM Quantum and Community, Qiskit: An open-source framework for quantum computing (2021).
  15. C. J. Wood and J. M. Gambetta, Quantification and characterization of leakage errors, Phys. Rev. A 97, 032306 (2018).
  16. F. Battistel, B. Varbanov, and B. Terhal, Hardware-efficient leakage-reduction scheme for quantum error correction with superconducting transmon qubits, PRX Quantum 2, 030314 (2021).
  17. M. Suchara, A. W. Cross, and J. M. Gambetta, Leakage suppression in the toric code, arXiv:1410.8562  (2014).
Citations (81)

Summary

We haven't generated a summary for this paper yet.