Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Personalized Intelligence at Scale (2203.06668v1)

Published 13 Mar 2022 in cs.CL and cs.AI

Abstract: Personalized Intelligence (PI) is the problem of providing customized AI experiences tailored to each individual user. In many applications, PI is preferred or even required. Existing personalization approaches involve fine-tuning pre-trained models to create new customized models. However, these approaches require a significant amount of computation to train, scaling with model size and the number of users, inhibiting PI to be realized widely. In this work, we introduce a novel model architecture and training/inference framework to enable Personalized Intelligence at scale. We achieve this by attaching a Personalization Head (PH) to pre-trained LLMs (LM). During training, the base LMs are frozen and only the parameters in PH are updated and are unique per user. This results in significantly smaller overall model sizes and training cost than traditional fine-tuning approaches when scaled across many users. We evaluate PHs on academia and industry-focused datasets and show that the PHs outperform zeroshot baseline in F1 score and are significantly more scalable than traditional fine-tuning approaches. We identify key factors required for effective PH design and training.

Summary

We haven't generated a summary for this paper yet.