Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Information Bottleneck Guided Joint Source and Channel Coding for Image Transmission (2203.06492v2)

Published 12 Mar 2022 in cs.IT, cs.CV, and math.IT

Abstract: Joint source and channel coding (JSCC) for image transmission has attracted increasing attention due to its robustness and high efficiency. However, the existing deep JSCC research mainly focuses on minimizing the distortion between the transmitted and received information under a fixed number of available channels. Therefore, the transmitted rate may be far more than its required minimum value. In this paper, an adaptive information bottleneck (IB) guided joint source and channel coding (AIB-JSCC) method is proposed for image transmission. The goal of AIB-JSCC is to reduce the transmission rate while improving the image reconstruction quality. In particular, a new IB objective for image transmission is proposed so as to minimize the distortion and the transmission rate. A mathematically tractable lower bound on the proposed objective is derived, and then, adopted as the loss function of AIB-JSCC. To trade off compression and reconstruction quality, an adaptive algorithm is proposed to adjust the hyperparameter of the proposed loss function dynamically according to the distortion during the training. Experimental results show that AIB-JSCC can significantly reduce the required amount of transmitted data and improve the reconstruction quality and downstream task accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Lunan Sun (13 papers)
  2. Yang Yang (884 papers)
  3. Mingzhe Chen (110 papers)
  4. Caili Guo (41 papers)
  5. Walid Saad (378 papers)
  6. H. Vincent Poor (884 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.