Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on Riemannian Gradient Descent With Illustrations of Speech Processing (2203.06031v1)

Published 11 Mar 2022 in cs.LG, cs.AI, cs.SD, and eess.AS

Abstract: This work focuses on designing low complexity hybrid tensor networks by considering trade-offs between the model complexity and practical performance. Firstly, we exploit a low-rank tensor-train deep neural network (TT-DNN) to build an end-to-end deep learning pipeline, namely LR-TT-DNN. Secondly, a hybrid model combining LR-TT-DNN with a convolutional neural network (CNN), which is denoted as CNN+(LR-TT-DNN), is set up to boost the performance. Instead of randomly assigning large TT-ranks for TT-DNN, we leverage Riemannian gradient descent to determine a TT-DNN associated with small TT-ranks. Furthermore, CNN+(LR-TT-DNN) consists of convolutional layers at the bottom for feature extraction and several TT layers at the top to solve regression and classification problems. We separately assess the LR-TT-DNN and CNN+(LR-TT-DNN) models on speech enhancement and spoken command recognition tasks. Our empirical evidence demonstrates that the LR-TT-DNN and CNN+(LR-TT-DNN) models with fewer model parameters can outperform the TT-DNN and CNN+(TT-DNN) counterparts.

Citations (16)

Summary

We haven't generated a summary for this paper yet.