Papers
Topics
Authors
Recent
2000 character limit reached

Are discrete units necessary for Spoken Language Modeling?

Published 11 Mar 2022 in cs.CL and cs.LG | (2203.05936v2)

Abstract: Recent work in spoken language modeling shows the possibility of learning a language unsupervisedly from raw audio without any text labels. The approach relies first on transforming the audio into a sequence of discrete units (or pseudo-text) and then training a LLM directly on such pseudo-text. Is such a discrete bottleneck necessary, potentially introducing irreversible errors in the encoding of the speech signal, or could we learn a LLM without discrete units at all? In this work, we study the role of discrete versus continuous representations in spoken language modeling. We show that discretization is indeed essential for good results in spoken language modeling. We show that discretization removes linguistically irrelevant information from the continuous features, helping to improve language modeling performances. On the basis of this study, we train a LLM on the discrete units of the HuBERT features, reaching new state-of-the-art results in the lexical, syntactic and semantic metrics of the Zero Resource Speech Challenge 2021 (Track 1 - Speech Only).

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.