Testing Indexability and Computing Whittle and Gittins Index in Subcubic Time (2203.05207v5)
Abstract: Whittle index is a generalization of Gittins index that provides very efficient allocation rules for restless multi-armed bandits. In this work, we develop an algorithm to test the indexability and compute the Whittle indices of any finite-state restless bandit arm. This algorithm works in the discounted and non-discounted cases, and can compute Gittins index. Our algorithm builds on three tools: (1) a careful characterization of Whittle index that allows one to compute recursively the kth smallest index from the $(k - 1)$th smallest, and to test indexability, (2) the use of the Sherman-Morrison formula to make this recursive computation efficient, and (3) a sporadic use of the fastest matrix inversion and multiplication methods to obtain a subcubic complexity. We show that an efficient use of the Sherman-Morrison formula leads to an algorithm that computes Whittle index in $(2/3)n3 + o(n3)$ arithmetic operations, where $n$ is the number of states of the arm. The careful use of fast matrix multiplication leads to the first subcubic algorithm to compute Whittle or Gittins index: By using the current fastest matrix multiplication, the theoretical complexity of our algorithm is O(n2.5286 ). We also develop an efficient implementation of our algorithm that can compute indices of Markov chains with several thousands of states in less than a few seconds.