Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nontrivial solutions for a class of gradient-type quasilinear elliptic systems (2203.05184v1)

Published 10 Mar 2022 in math.AP

Abstract: The aim of this paper is investigating the existence of weak bounded solutions of the gradient-type quasilinear elliptic system $$(P)\qquad \left{ \begin{array}{ll} - {\rm div} ( a_i(x, u_i, \nabla u_i) ) + A_{i, t} (x, u_i, \nabla u_i) = G_i(x, \mathbf{u}) &\hbox{ in $\Omega$}\ \quad\qquad\qquad\qquad\qquad \mbox{ for }\; i\in{1,\dots,m},\ \mathbf{u} = 0 &\hbox{ on $\partial\Omega$,} \end{array} \right.$$ with $m\geq 2$ and $\mathbf{u}=(u_1,\dots, u_{m})$, where $\Omega\subset\mathbb{R}N$ is an open bounded domain and some functions $A_i:\Omega\times\mathbb{R} \times \mathbb{R}N\rightarrow\mathbb{R}$, $i\in{1,\dots,m}$, and $G:\Omega\times\mathbb{R}m\rightarrow\mathbb{R}$ exist such that $a_i(x,t,\xi) = \nabla_{\xi} A_i(x,t,\xi)$, $A_{i, t} (x,t,\xi) = \frac{\partial A_i}{\partial t} (x,t,\xi)$ and $G_{i}(x,\mathbf{u}) = \frac{\partial G}{\partial u_i}(x,\mathbf{u})$. We prove that, under suitable hypotheses, the functional $\mathcal{J}$ related to problem $(P)$ is $\mathcal{C}1$ on a "good" Banach space $X$ and satisfies the weak Cerami-Palais-Smale condition. Then, generalized versions of the Mountain Pass Theorems allow us to prove the existence of at least one critical point and, if $\mathcal{J}$ is even, of infinitely many ones, too.

Summary

We haven't generated a summary for this paper yet.