2000 character limit reached
Sub-Riemannian Geodesics on $SL(2, \mathbb{R})$ (2203.05073v1)
Published 9 Mar 2022 in math.DG
Abstract: We explicitly describe the length minimizing geodesics for a sub-Riemannian structure of the elliptic type defined on $SL(2, \mathbb{R})$. Our method uses a symmetry reduction which translates the problem into a Riemannian problem on a two dimensional quotient space, on which projections of geodesics can be easily visualized. As a byproduct, we obtain an alternative derivation of the characterization of the cut-locus obtained in \cite{BoscaRossi}. We use classification results for three dimensional right invariant sub-Riemannian structures on Lie groups \cite{AGBD}, \cite{Biggs}, \cite{HB2} to identify exactly automorphic structures on which our results apply.