Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LEMON: LanguagE ModeL for Negative Sampling of Knowledge Graph Embeddings (2203.04703v3)

Published 9 Mar 2022 in cs.AI and cs.LG

Abstract: Knowledge Graph Embedding models have become an important area of machine learning.Those models provide a latent representation of entities and relations in a knowledge graph which can then be used in downstream machine learning tasks such as link prediction. The learning process of such models can be performed by contrasting positive and negative triples. While all triples of a KG are considered positive, negative triples are usually not readily available. Therefore, the choice of the sampling method to obtain the negative triples play a crucial role in the performance and effectiveness of Knowledge Graph Embedding models. Most of the current methods fetch negative samples from a random distribution of entities in the underlying Knowledge Graph which also often includes meaningless triples. Other known methods use adversarial techniques or generative neural networks which consequently reduce the efficiency of the process. In this paper, we propose an approach for generating informative negative samples considering available complementary knowledge about entities. Particularly, Pre-trained LLMs are used to form neighborhood clusters by utilizing the distances between entities to obtain representations of symbolic entities via their textual information. Our comprehensive evaluations demonstrate the effectiveness of the proposed approach on benchmark Knowledge Graphs with textual information for the link prediction task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Md Rashad Al Hasan Rony (10 papers)
  2. Mirza Mohtashim Alam (3 papers)
  3. Semab Ali (1 paper)
  4. Jens Lehmann (80 papers)
  5. Sahar Vahdati (19 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.