Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gym-saturation: an OpenAI Gym environment for saturation provers (2203.04699v1)

Published 9 Mar 2022 in cs.AI

Abstract: gym-saturation is an OpenAI Gym environment for reinforcement learning (RL) agents capable of proving theorems. Currently, only theorems written in a formal language of the Thousands of Problems for Theorem Provers (TPTP) library in clausal normal form (CNF) are supported. gym-saturation implements the 'given clause' algorithm (similar to the one used in Vampire and E Prover). Being written in Python, gym-saturation was inspired by PyRes. In contrast to the monolithic architecture of a typical Automated Theorem Prover (ATP), gym-saturation gives different agents opportunities to select clauses themselves and train from their experience. Combined with a particular agent, gym-saturation can work as an ATP. Even with a non trained agent based on heuristics, gym-saturation can find refutations for 688 (of 8257) CNF problems from TPTP v7.5.0.

Citations (3)

Summary

We haven't generated a summary for this paper yet.