Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Routing with Privacy for Drone Package Delivery Systems (2203.04406v2)

Published 4 Mar 2022 in cs.CR, cs.CY, cs.SI, cs.SY, and eess.SY

Abstract: Unmanned aerial vehicles (UAVs), or drones, are increasingly being used to deliver goods from vendors to customers. To safely conduct these operations at scale, drones are required to broadcast position information as codified in remote identification (remote ID) regulations. However, location broadcast of package delivery drones introduces a privacy risk for customers using these delivery services: Third-party observers may leverage broadcast drone trajectories to link customers with their purchases, potentially resulting in a wide range of privacy risks. We propose a probabilistic definition of privacy risk based on the likelihood of associating a customer to a vendor given a package delivery route. Next, we quantify these risks, enabling drone operators to assess privacy risks when planning delivery routes. We then evaluate the impacts of various factors (e.g., drone capacity) on privacy and consider the trade-offs between privacy and delivery wait times. Finally, we propose heuristics for generating routes with privacy guarantees to avoid exhaustive enumeration of all possible routes and evaluate their performance on several realistic delivery scenarios.

Citations (8)

Summary

We haven't generated a summary for this paper yet.