Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PASS: Part-Aware Self-Supervised Pre-Training for Person Re-Identification (2203.03931v3)

Published 8 Mar 2022 in cs.CV

Abstract: In person re-identification (ReID), very recent researches have validated pre-training the models on unlabelled person images is much better than on ImageNet. However, these researches directly apply the existing self-supervised learning (SSL) methods designed for image classification to ReID without any adaption in the framework. These SSL methods match the outputs of local views (e.g., red T-shirt, blue shorts) to those of the global views at the same time, losing lots of details. In this paper, we propose a ReID-specific pre-training method, Part-Aware Self-Supervised pre-training (PASS), which can generate part-level features to offer fine-grained information and is more suitable for ReID. PASS divides the images into several local areas, and the local views randomly cropped from each area are assigned with a specific learnable [PART] token. On the other hand, the [PART]s of all local areas are also appended to the global views. PASS learns to match the output of the local views and global views on the same [PART]. That is, the learned [PART] of the local views from a local area is only matched with the corresponding [PART] learned from the global views. As a result, each [PART] can focus on a specific local area of the image and extracts fine-grained information of this area. Experiments show PASS sets the new state-of-the-art performances on Market1501 and MSMT17 on various ReID tasks, e.g., vanilla ViT-S/16 pre-trained by PASS achieves 92.2\%/90.2\%/88.5\% mAP accuracy on Market1501 for supervised/UDA/USL ReID. Our codes are available at https://github.com/CASIA-IVA-Lab/PASS-reID.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Kuan Zhu (8 papers)
  2. Haiyun Guo (15 papers)
  3. Tianyi Yan (15 papers)
  4. Yousong Zhu (19 papers)
  5. Jinqiao Wang (76 papers)
  6. Ming Tang (199 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.