Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Few-Shot Time Series Forecasting based on Bi-level Programming (2203.03328v1)

Published 7 Mar 2022 in cs.LG and cs.NE

Abstract: New micro-grid design with renewable energy sources and battery storage systems can help improve greenhouse gas emissions and reduce the operational cost. To provide an effective short-/long-term forecasting of both energy generation and load demand, time series predictive modeling has been one of the key tools to guide the optimal decision-making for planning and operation. One of the critical challenges of time series renewable energy forecasting is the lack of historical data to train an adequate predictive model. Moreover, the performance of a machine learning model is sensitive to the choice of its corresponding hyperparameters. Bearing these considerations in mind, this paper develops a BiLO-Auto-TSF/ML framework that automates the optimal design of a few-shot learning pipeline from a bi-level programming perspective. Specifically, the lower-level meta-learning helps boost the base-learner to mitigate the small data challenge while the hyperparameter optimization at the upper level proactively searches for the optimal hyperparameter configurations for both base- and meta-learners. Note that the proposed framework is so general that any off-the-shelf machine learning method can be used in a plug-in manner. Comprehensive experiments fully demonstrate the effectiveness of our proposed BiLO-Auto-TSF/ML framework to search for a high-performance few-shot learning pipeline for various energy sources.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jiangjiao Xu (2 papers)
  2. Ke Li (723 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.