Papers
Topics
Authors
Recent
2000 character limit reached

Incidence geometry of the Fano plane and Freudenthal's ansatz for the construction of (split) octonions

Published 7 Mar 2022 in math.CO and math.RA | (2203.03261v1)

Abstract: In this article we consider structures on a Fano plane ${\cal F}$ which allow a generalisation of Freudenthal's construction of a norm and a bilinear multiplication law on an eight-dimensional vector space ${\mathbb O_{\cal F}}$ canonically associated to ${\cal F}$. We first determine necessary and sufficient conditions in terms of the incidence geometry of ${\cal F}$ for these structures to give rise to division composition algebras, and classify the corresponding structures using a logarithmic version of the multiplication. We then show how these results can be used to deduce analogous results in the split composition algebra case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.