Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Key-value Memory Enhanced Multi-step Graph Reasoning for Knowledge-based Visual Question Answering (2203.02985v1)

Published 6 Mar 2022 in cs.CV, cs.AI, and cs.CL

Abstract: Knowledge-based visual question answering (VQA) is a vision-language task that requires an agent to correctly answer image-related questions using knowledge that is not presented in the given image. It is not only a more challenging task than regular VQA but also a vital step towards building a general VQA system. Most existing knowledge-based VQA systems process knowledge and image information similarly and ignore the fact that the knowledge base (KB) contains complete information about a triplet, while the extracted image information might be incomplete as the relations between two objects are missing or wrongly detected. In this paper, we propose a novel model named dynamic knowledge memory enhanced multi-step graph reasoning (DMMGR), which performs explicit and implicit reasoning over a key-value knowledge memory module and a spatial-aware image graph, respectively. Specifically, the memory module learns a dynamic knowledge representation and generates a knowledge-aware question representation at each reasoning step. Then, this representation is used to guide a graph attention operator over the spatial-aware image graph. Our model achieves new state-of-the-art accuracy on the KRVQR and FVQA datasets. We also conduct ablation experiments to prove the effectiveness of each component of the proposed model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mingxiao Li (48 papers)
  2. Marie-Francine Moens (102 papers)
Citations (10)