Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution of integrals with fractional Brownian motion for different Hurst indices (2203.02323v2)

Published 4 Mar 2022 in q-fin.CP, cs.NA, and math.NA

Abstract: In this paper, we will evaluate integrals that define the conditional expectation, variance and characteristic function of stochastic processes with respect to fractional Brownian motion (fBm) for all relevant Hurst indices, i.e. $H \in (0,1)$. The fractional Ornstein-Uhlenbeck (fOU) process, for example, gives rise to highly nontrivial integration formulas that need careful analysis when considering the whole range of Hurst indices. We will show that the classical technique of analytic continuation, from complex analysis, provides a way of extending the domain of validity of an integral, from $H\in(1/2,1)$, to the larger domain, $H\in(0,1)$. Numerical experiments for different Hurst indices confirm the robustness and efficiency of the integral formulations presented here. Moreover, we provide accurate and highly efficient financial option pricing results for processes that are related to the fOU process, with the help of Fourier cosine expansions.

Summary

We haven't generated a summary for this paper yet.