Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A general class of linear unconditionally energy stable schemes for the gradient flows (2203.02290v1)

Published 4 Mar 2022 in math.NA and cs.NA

Abstract: This paper studies a class of linear unconditionally energy stable schemes for the gradient flows. Such schemes are built on the SAV technique and the general linear time discretization (GLTD) as well as the linearization based on the extrapolation for the nonlinear term, and may be arbitrarily high-order accurate and very general, containing many existing SAV schemes and new SAV schemes. It is shown that the semi-discrete-in-time schemes are unconditionally energy stable when the GLTD is algebraically stable, and are convergent with the order of $\min{\hat{q},\nu}$ under the diagonal stability and some suitable regularity and accurate starting values, where $\hat{q}$ is the generalized stage order of the GLTD and $\nu$ denotes the number of the extrapolation points in time. The energy stability results can be easily extended to the fully discrete schemes, for example, if the Fourier spectral method is employed in space when the periodic boundary conditions are specified. Some numerical experiments on the Allen-Cahn, Cahn-Hilliard, and phase field crystal models are conducted to validate those theories as well as the effectiveness, the energy stability and the accuracy of our schemes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.