2000 character limit reached
Variational Inequalities For The Differences Of Averages Over Lacunary Sequences (2203.02154v4)
Published 4 Mar 2022 in math.CA
Abstract: Let $f$ be a locally integrable function defined on $\mathbb{R}$, and let $(n_k)$ be a lacunary sequence. Define the operator $A_{n_k}$ by $$A_{n_k}f(x)=\frac{1}{n_k}\int_0{n_k}f(x-t)\, dt.$$ We prove various types of new inequalities for the variation operator $$\mathcal{V}sf(x)=\left(\sum{k=1}\infty|A_{n_k}f(x)-A_{n_{k-1}}f(x)|s\right){1/s}$$ when $2\leq s<\infty$.