Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Label Leakage and Protection from Forward Embedding in Vertical Federated Learning (2203.01451v3)

Published 2 Mar 2022 in cs.LG and cs.CR

Abstract: Vertical federated learning (vFL) has gained much attention and been deployed to solve machine learning problems with data privacy concerns in recent years. However, some recent work demonstrated that vFL is vulnerable to privacy leakage even though only the forward intermediate embedding (rather than raw features) and backpropagated gradients (rather than raw labels) are communicated between the involved participants. As the raw labels often contain highly sensitive information, some recent work has been proposed to prevent the label leakage from the backpropagated gradients effectively in vFL. However, these work only identified and defended the threat of label leakage from the backpropagated gradients. None of these work has paid attention to the problem of label leakage from the intermediate embedding. In this paper, we propose a practical label inference method which can steal private labels effectively from the shared intermediate embedding even though some existing protection methods such as label differential privacy and gradients perturbation are applied. The effectiveness of the label attack is inseparable from the correlation between the intermediate embedding and corresponding private labels. To mitigate the issue of label leakage from the forward embedding, we add an additional optimization goal at the label party to limit the label stealing ability of the adversary by minimizing the distance correlation between the intermediate embedding and corresponding private labels. We conducted massive experiments to demonstrate the effectiveness of our proposed protection methods.

Citations (35)

Summary

We haven't generated a summary for this paper yet.