Papers
Topics
Authors
Recent
Search
2000 character limit reached

Frames of iterations and vector-valued model spaces

Published 2 Mar 2022 in math.FA and math.CA | (2203.01301v3)

Abstract: Let T be a bounded operator on a Hilbert space H, and F = {f_j: j in J} an at most countable set of vectors in H. In this note, we characterize the pairs {T, F} such that {Tn f: f in F, n in I} form a frame of H, for the cases of I = N_0 and I = Z. The characterization for unilateral iterations gives a similarity with the compression of the shift acting on model spaces of the Hardy space of analytic functions defined on the unit disk with values in $l2(J). This generalizes recent work for iterations of a single function. In the case of bilateral iterations, the characterization is by the bilateral shift acting on doubly invariant subspaces of L2(T,l2(J)). Furthermore, we characterize the frames of iterations for vector-valued model operators when J is finite in terms of Toeplitz and multiplication operators in the unilateral and bilateral case, respectively. Finally, we study the problem of finding the minimal number of orbits that produce a frame in this context.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.