Papers
Topics
Authors
Recent
Search
2000 character limit reached

Semilinear elliptic Schrödinger equations with singular potentials and absorption terms

Published 2 Mar 2022 in math.AP | (2203.01266v1)

Abstract: Let $\Omega \subset \mathbb{R}N$ ($N \geq 3$) be a $C2$ bounded domain and $\Sigma \subset \Omega$ be a compact, $C2$ submanifold without boundary, of dimension $k$ with $0\leq k < N-2$. Put $L_\mu = \Delta + \mu d_\Sigma{-2}$ in $\Omega \setminus \Sigma$, where $d_\Sigma(x) = \mathrm{dist}(x,\Sigma)$ and $\mu$ is a parameter. We investigate the boundary value problem (P) $-L_\mu u + g(u) = \tau$ in $\Omega \setminus \Sigma$ with condition $u=\nu$ on $\partial \Omega \cup \Sigma$, where $g: \mathbb{R} \to \mathbb{R}$ is a nondecreasing, continuous function, and $\tau$ and $\nu$ are positive measures. The complex interplay between the competing effects of the inverse-square potential $d_\Sigma{-2}$, the absorption term $g(u)$ and the measure data $\tau,\nu$ discloses different scenarios in which problem (P) is solvable. We provide sharp conditions on the growth of $g$ for the existence of solutions. When $g$ is a power function, namely $g(u)=|u|{p-1}u$ with $p>1$, we show that problem (P) admits several critical exponents in the sense that singular solutions exist in the subcritical cases (i.e. $p$ is smaller than a critical exponent) and singularities are removable in the supercritical cases (i.e. $p$ is greater than a critical exponent). Finally, we establish various necessary and sufficient conditions expressed in terms of appropriate capacities for the solvability of (P).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.