Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Stochastic Bandits over a Bit-Constrained Channel (2203.01198v1)

Published 2 Mar 2022 in cs.LG, cs.IT, cs.SY, eess.SY, math.IT, and math.OC

Abstract: One of the primary challenges in large-scale distributed learning stems from stringent communication constraints. While several recent works address this challenge for static optimization problems, sequential decision-making under uncertainty has remained much less explored in this regard. Motivated by this gap, we introduce a new linear stochastic bandit formulation over a bit-constrained channel. Specifically, in our setup, an agent interacting with an environment transmits encoded estimates of an unknown model parameter to a server over a communication channel of finite capacity. The goal of the server is to take actions based on these estimates to minimize cumulative regret. To this end, we develop a novel and general algorithmic framework that hinges on two main components: (i) an adaptive encoding mechanism that exploits statistical concentration bounds, and (ii) a decision-making principle based on confidence sets that account for encoding errors. As our main result, we prove that when the unknown model is $d$-dimensional, a channel capacity of $O(d)$ bits suffices to achieve order-optimal regret. To demonstrate the generality of our approach, we then show that the same result continues to hold for non-linear observation models satisfying standard regularity conditions. Finally, we establish that for the simpler unstructured multi-armed bandit problem, $1$ bit channel-capacity is sufficient for achieving optimal regret bounds. Overall, our work takes a significant first step towards paving the way for statistical decision-making over finite-capacity channels.

Citations (8)

Summary

We haven't generated a summary for this paper yet.