Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates (2203.01028v1)

Published 2 Mar 2022 in math.NA and cs.NA

Abstract: Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the $m$-th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix-Raviart ($m=1$) or Morley ($m=2$) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated $L2$ error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in $3$D and highlights a new version of discrete reliability.

Citations (5)

Summary

We haven't generated a summary for this paper yet.