Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A modified convolution quadrature combined with the method of fundamental solutions and Galerkin BEM for acoustic scattering (2203.00996v1)

Published 2 Mar 2022 in math.NA and cs.NA

Abstract: We describe a numerical method for the solution of acoustic exterior scattering problems based on the time-domain boundary integral representation of the solution. As the spatial discretization of the resulting time-domain boundary integral equation we use either the method of fundamental solutions (MFS) or the Galerkin boundary element method (BEM). In time we apply either a standard convolution quadrature (CQ) based on an A-stable linear multistep method or a modified CQ scheme. It is well-known that the standard low-order CQ schemes for hyperbolic problems suffer from strong dissipation and dispersion properties. The modified scheme is designed to avoid these properties. We give a careful description of the modified scheme and its implementation with differences due to different spatial discretizations highlighted. Numerous numerical experiments illustrate the effectiveness of the modified scheme and dramatic improvement with errors up to two orders of magnitude smaller in comparison with the standard scheme

Citations (1)

Summary

We haven't generated a summary for this paper yet.