Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MuSE-SVS: Multi-Singer Emotional Singing Voice Synthesizer that Controls Emotional Intensity (2203.00931v3)

Published 2 Mar 2022 in eess.AS and cs.SD

Abstract: We propose a multi-singer emotional singing voice synthesizer, Muse-SVS, that expresses emotion at various intensity levels by controlling subtle changes in pitch, energy, and phoneme duration while accurately following the score. To control multiple style attributes while avoiding loss of fidelity and expressiveness due to interference between attributes, Muse-SVS represents all attributes and their relations together by a joint embedding in a unified embedding space. Muse-SVS can express emotional intensity levels not included in the training data through embedding interpolation and extrapolation. We also propose a statistical pitch predictor to express pitch variance according to emotional intensity, and a context-aware residual duration predictor to prevent the accumulation of variances in phoneme duration, which is crucial for synchronization with instrumental parts. In addition, we propose a novel ASPP-Transformer, which combines atrous spatial pyramid pooling (ASPP) and Transformer, to improve fidelity and expressiveness by referring to broad contexts. In experiments, Muse-SVS exhibited improved fidelity, expressiveness, and synchronization performance compared with baseline models. The visualization results show that Muse-SVS effectively express the variance in pitch, energy, and phoneme duration according to emotional intensity. To the best of our knowledge, Muse-SVS is the first neural SVS capable of controlling emotional intensity.

Citations (11)

Summary

We haven't generated a summary for this paper yet.