Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate permutation entropy, a Cartesian graph product approach (2203.00550v1)

Published 1 Mar 2022 in math.CO and cs.DM

Abstract: Entropy metrics are nonlinear measures to quantify the complexity of time series. Among them, permutation entropy is a common metric due to its robustness and fast computation. Multivariate entropy metrics techniques are needed to analyse data consisting of more than one time series. To this end, we present a multivariate permutation entropy, $MPE_G$, using a graph-based approach. Given a multivariate signal, the algorithm $MPE_G$ involves two main steps: 1) we construct an underlying graph G as the Cartesian product of two graphs G1 and G2, where G1 preserves temporal information of each times series together with G2 that models the relations between different channels, and 2) we consider the multivariate signal as samples defined on the regular graph G and apply the recently introduced permutation entropy for graphs. Our graph-based approach gives the flexibility to consider diverse types of cross channel relationships and signals, and it overcomes with the limitations of current multivariate permutation entropy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.