Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the validity of the Euler-Lagrange system without growth assumptions (2203.00333v1)

Published 1 Mar 2022 in math.AP

Abstract: The constrained minimisers of convex integral functionals of the form $\mathscr F(v)=\int_\Omega F(\nablak v(x))\mathrm d x $ defined on Sobolev mappings $v\in \mathrm W{k,1}_g(\Omega , \mathbb RN )\cap K$, where $K$ is a closed convex subset of the Dirichlet class $\mathrm W{k,1}_{g}(\Omega , \mathbb RN ),$ are characterised as the energy solutions to the Euler-Lagrange inequality for $\mathscr F$. We assume that the essentially smooth integrand $F\colon \mathbb R{N} \otimes \odot{k}\mathbb R{n} \to \mathbb R\cup{+\infty}$ is convex, lower semi-continuous, proper and at least super-linear at infinity. In the unconstrained case $K=\mathrm W{k,1}_{g}(\Omega , \mathbb RN )$, if the integrand $F$ is convex, real-valued, and satisfies a demi-coercivity condition, then $$ \int_{\Omega} ! F{\prime}(\nabla{k} u) \cdot \nabla{k}\phi \, \mathrm d x =0 $$ holds for all $\phi \in \mathrm W_{0}{k}( \Omega , \mathbb R{N})$, where $\nabla{k} u$ is the absolutely continuous part of the vector measure $D{k}u$.

Citations (26)

Summary

We haven't generated a summary for this paper yet.