A Comprehensive Review of Quantum Random Number Generators: Concepts, Classification and the Origin of Randomness (2203.00261v3)
Abstract: Random numbers are central to cryptography and various other tasks. The intrinsic probabilistic nature of quantum mechanics has allowed us to construct a large number of quantum random number generators (QRNGs) that are distinct from the traditional true number generators. This article provides a review of the existing QRNGs with a focus on their various possible features (e.g., device independence, semi-device independence) that are not achievable in the classical world. It also discusses the origin, applicability, and other facets of randomness. Specifically, the origin of randomness is explored from the perspective of a set of hierarchical axioms for quantum mechanics, implying that succeeding axioms can be regarded as a superstructure constructed on top of a structure built by the preceding axioms. The axioms considered are: (Q1) incompatibility and uncertainty; (Q2) contextuality; (Q3) entanglement; (Q4) nonlocality and (Q5) indistinguishability of identical particles. Relevant toy generalized probability theories (GPTs) are introduced, and it is shown that the origin of random numbers in different types of QRNGs known today are associated with different layers of nonclassical theories and all of them do not require all the features of quantum mechanics. Further, classification of the available QRNGs has been done and the technological challenges associated with each class are critically analyzed. Commercially available QRNGs are also compared.
- Metropolis N, Ulam S. The Monte Carlo Method. Journal of the American Statistical Association. 1949 Sep;44(247):335-41. Available from: https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310.
- Karp RM. An introduction to randomized algorithms. Discrete Applied Mathematics. 1991 Nov;34(1):165-201. Available from: https://www.sciencedirect.com/science/article/pii/0166218X9190086C.
- Motwani R, Raghavan P. Randomized Algorithms. ACM Computing Surveys. 1996 mar;28(1):33–37. Available from: https://doi.org/10.1145/234313.234327.
- Shannon CE. Communication theory of secrecy systems. Bell System Technical Journal. 1949 Oct;28(4):656-715. Available from: https://ieeexplore.ieee.org/document/6769090.
- Gennaro R. Randomness in cryptography. IEEE Secur Priv. 2006 Apr;4(2):64-7. Available from: https://ieeexplore.ieee.org/abstract/document/1621063.
- James F. A review of pseudorandom number generators. Comput Phys Commun. 1990 Oct;60(3):329-44. Available from: https://www.sciencedirect.com/science/article/pii/001046559090032V.
- Herrero-Collantes M, Garcia-Escartin JC. Quantum random number generators. Rev Mod Phys. 2017 Feb;89(1):015004. Available from: https://link.aps.org/doi/10.1103/RevModPhys.89.015004.
- Quantum random number generation - npj Quantum Information. npj Quantum Inf. 2016 Jun;2(16021):1-9. Available from: https://doi.org/10.1038/npjqi.2016.21.
- Quantum generators of random numbers. Scientific Reports. 2021 Aug;11(1):16108. Available from: https://doi.org/10.1038/s41598-021-95388-7.
- Automatic Nonuniform Random Variate Generation. Berlin, Germany: Springer; 2004. Available from: https://link.springer.com/book/10.1007/978-3-662-05946-3.
- Hull TE, Dobell AR. Random Number Generators. SIAM Rev. 1962 Aug. Available from: https://epubs.siam.org/doi/abs/10.1137/1004061?mobileUi=0.
- A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST. 2017 Feb. Available from: https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic.
- DIEHARD; 2001. [Online; accessed 22. Feb. 2022]. Available from: https://tams.informatik.uni-hamburg.de/paper/2001/SA_Witt_Hartmann/cdrom/Internetseiten/stat.fsu.edu/diehard.html.
- Haahr M. RANDOM.ORG - Introduction to Randomness and Random Numbers; 1999. [Online; accessed 28. Feb. 2022]. Available from: https://www.random.org/randomness.
- Lee JS, Cleaver GB. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography. Heliyon. 2017 Oct;3(10):e00422. Available from: https://www.sciencedirect.com/science/article/pii/S2405844017310897.
- Zhun H, Hongyi C. A truly random number generator based on thermal noise. In: ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat. No.01TH8549). IEEE; 2001. p. 862-4. Available from: https://ieeexplore.ieee.org/abstract/document/982700.
- Analysis of Intel’s Ivy Bridge digital random number generator (2012). Available from: https://cdn.atraining.ru/docs/Intel_TRNG_Report_20120312.pdf.
- Chaos-based random number generators. Part II: practical realization. IEEE Trans Circuits Syst I. 2001 Mar;48(3):382-5. Available from: https://ieeexplore.ieee.org/document/915396.
- Killmann W, Schindler W. A proposal for: Functionality classes for random number generators. ser BDI, Bonn. 2011. Available from: https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/15ss/15ss-taoc/01_AIS31_Functionality_classes_for_random_number_generators.pdf.
- Randomness in quantum mechanics: philosophy, physics and technology. Rep Prog Phys. 2017 Nov;80(12):124001. Available from: http://dx.doi.org/10.1088/1361-6633/aa8731.
- Intrinsic randomness as a measure of quantum coherence. Phys Rev A. 2015 Aug;92:022124. Available from: https://link.aps.org/doi/10.1103/PhysRevA.92.022124.
- How to Turn a Quantum Computer Into the Ultimate Randomness Generator |||| Quanta Magazine; 2019. [Online; accessed 28. Feb. 2022]. Available from: https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-generator-20190619.
- Nielsen MA, Chuang IL. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge, England, UK: Cambridge University Press; 2010. Available from: https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview.
- Pathak A. Elements of Quantum Computation and Quantum Communication. Andover, England, UK: Taylor & Francis; 2013. Available from: https://www.taylorfrancis.com/books/mono/10.1201/b15007/elements-quantum-computation-quantum-communication-anirban-pathak.
- Schmidt H. Quantum‐Mechanical Random‐Number Generator. Journal of Applied Physics. 1970;41(2):462-8. Available from: https://doi.org/10.1063/1.1658698.
- Ishida M. Random number generator. Annals of Institute of Statistical Mathematics. 1956;8:119-26. Available from: https://ci.nii.ac.jp/naid/30040870857/en/.
- Obtaining True-Random Binary Numbers from a Weak Radioactive Source. In: Computational Science and Its Applications – ICCSA 2005. Berlin, Germany: Springer; 2005. p. 634-46. Available from: https://link.springer.com/chapter/10.1007/11424826_67.
- Vincent CH. The generation of truly random binary numbers. Journal of Physics E: Scientific Instruments. 1970 aug;3(8):594-8. Available from: https://doi.org/10.1088/0022-3735/3/8/303.
- Gude M. Concept for a High Performance Random Number Generator Based on Physical Random Phenomena. Frequenz. 1985;39(7-8):187-90. Available from: https://doi.org/10.1515/FREQ.1985.39.7-8.187.
- An integrated analog/digital random noise source. IEEE Trans Circuits Syst I. 1997 Jun;44(6):521-8. Available from: https://ieeexplore.ieee.org/document/586025.
- Petrie CS, Connelly JA. A noise-based IC random number generator for applications in cryptography. IEEE Trans Circuits Syst I. 2000 May;47(5):615-21. Available from: https://ieeexplore.ieee.org/document/847868.
- A fast and compact quantum random number generator. Review of Scientific Instruments. 2000;71(4):1675-80. Available from: https://doi.org/10.1063/1.1150518.
- Scheme for a quantum random number generator. Journal of Applied Physics. 2006;100(5):056107. Available from: https://doi.org/10.1063/1.2338830.
- Optical quantum random number generator. Journal of Modern Optics. 2000 Mar;47(4):595–598. Available from: http://dx.doi.org/10.1080/09500340008233380.
- Demonstrating quantum random with single photons. Eur J Phys. 2009 Aug;30(5):1189-200. Available from: http://dx.doi.org/10.1088/0143-0807/30/5/026.
- On-chip generation of high-order single-photon W-states - Nature Photonics. Nat Photonics. 2014 Oct;8(10):791-5. Available from: https://doi.org/10.1038/nphoton.2014.204.
- Practical and fast quantum random number generation based on photon arrival time relative to external reference. Applied Physics Letters. 2014;104(5):051110. Available from: https://doi.org/10.1063/1.4863224.
- A Monolithic Silicon Quantum Random Number Generator Based on Measurement of Photon Detection Time. IEEE Photonics J. 2015 Sep;7(5):1-13. Available from: https://ieeexplore.ieee.org/document/7270265.
- Multi-bit quantum random number generation by measuring positions of arrival photons. Review of Scientific Instruments. 2014 Oct;85(10):103116. Available from: https://doi.org/10.1063/1.4897485.
- SPADs for quantum random number generators and beyond. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE; 2014. p. 788-94. Available from: https://ieeexplore.ieee.org/document/6742986.
- Multi-bit quantum random number generation by measuring positions of arrival photons. Review of Scientific Instruments. 2014;85(10):103116. Available from: https://doi.org/10.1063/1.4897485.
- High speed optical quantum random number generation. Opt Express. 2010 Jun;18(12):13029-37. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-18-12-13029.
- Two-bit quantum random number generator based on photon-number-resolving detection. Rev Sci Instrum. 2011 Jul;82(7):073109. Available from: https://doi.org/10.1063/1.3613952.
- Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys Rev A. 2010 Jun;81:063814. Available from: https://link.aps.org/doi/10.1103/PhysRevA.81.063814.
- A generator for unique quantum random numbers based on vacuum states. Nature Photonics. 2010 Oct;4(10):711-5. Available from: https://doi.org/10.1038/nphoton.2010.197.
- Precision measurement beyond the shot-noise limit. Phys Rev Lett. 1987 Jul;59:278-81. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.59.278.
- Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters. 2011;98(23):231103. Available from: https://doi.org/10.1063/1.3597793.
- Scalable parallel physical random number generator based on a superluminescent LED. Optics Letters. 2011 Mar;36(6):1020. Available from: http://dx.doi.org/10.1364/OL.36.001020.
- The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Review of Scientific Instruments. 2015 Jun;86(6):063105. Available from: http://dx.doi.org/10.1063/1.4922417.
- Quantum random bit generation using stimulated Raman scattering. Opt Express. 2011 Dec;19(25):25173-80. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-19-25-25173.
- Quantum random bit generation using energy fluctuations in stimulated Raman scattering. Opt Express. 2013 Dec;21(24):29350-7. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-21-24-29350.
- Random numbers certified by Bell’s theorem. Nature. 2010 Apr;464(7291):1021-4. Available from: https://doi.org/10.1038/nature09008.
- Experimental Certification of Random Numbers via Quantum Contextuality. Scientific Reports. 2013 Apr;3(1):1627. Available from: https://doi.org/10.1038/srep01627.
- Quantum random number generator based on spin noise. Phys Rev A. 2008 May;77:054101. Available from: https://link.aps.org/doi/10.1103/PhysRevA.77.054101.
- Spin Noise Spectroscopy in GaAs. Phys Rev Lett. 2005 Nov;95:216603. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.95.216603.
- Effect of Initial Spin Polarization on Spin Dephasing and the Electron g𝑔gitalic_g Factor in a High-Mobility Two-Dimensional Electron System. Phys Rev Lett. 2007 Apr;98:176401. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.98.176401.
- Quantum random number generators with entanglement for public randomness testing. Scientific Reports. 2020;10(1):1-9. Available from: https://www.nature.com/articles/s41598-019-56706-2.
- Colbeck R. Quantum And Relativistic Protocols For Secure Multi-Party Computation. arXiv. 2009 Nov. Available from: https://arxiv.org/abs/0911.3814v2.
- Colbeck R, Kent A. Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and Theoretical. 2011 Feb;44(9):095305. Available from: http://dx.doi.org/10.1088/1751-8113/44/9/095305.
- Security and composability of randomness expansion from Bell inequalities. Phys Rev A. 2013 Jan;87:012335. Available from: https://link.aps.org/doi/10.1103/PhysRevA.87.012335.
- Pironio S, Massar S. Security of practical private randomness generation. Physical Review A. 2013 Jan;87(1). Available from: http://dx.doi.org/10.1103/PhysRevA.87.012336.
- Bell violation using entangled photons without the fair-sampling assumption. Nature. 2013 May;497(7448):227-30. Available from: https://doi.org/10.1038/nature12012.
- Realistic noise-tolerant randomness amplification using finite number of devices - Nature Communications. Nat Commun. 2016 Apr;7(11345):1-6. Available from: https://doi.org/10.1038/ncomms11345.
- Source-Independent Quantum Random Number Generation. Physical Review X. 2016 Feb;6(1). Available from: http://dx.doi.org/10.1103/PhysRevX.6.011020.
- Source-Device-Independent Ultrafast Quantum Random Number Generation. Physical Review Letters. 2017 Feb;118(6). Available from: http://dx.doi.org/10.1103/PhysRevLett.118.060503.
- Simple source device-independent continuous-variable quantum random number generator. Phys Rev A. 2019 Jun;99:062326. Available from: https://link.aps.org/doi/10.1103/PhysRevA.99.062326.
- High speed continuous variable source-independent quantum random number generation. Quantum Science and Technology. 2019 apr;4(2):025013. Available from: https://doi.org/10.1088/2058-9565/ab0fd9.
- Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nature Communications. 2018 Dec;9(1):5365. Available from: https://doi.org/10.1038/s41467-018-07585-0.
- Loss-tolerant measurement-device-independent quantum random number generation. New Journal of Physics. 2015 Dec;17(12):125011. Available from: http://dx.doi.org/10.1088/1367-2630/17/12/125011.
- Experimental measurement-device-independent quantum random-number generation. Phys Rev A. 2016 Dec;94:060301. Available from: https://link.aps.org/doi/10.1103/PhysRevA.94.060301.
- Tavakoli A. Semi-Device-Independent Framework Based on Restricted Distrust in Prepare-and-Measure Experiments. Phys Rev Lett. 2021 May;126(21):210503. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.126.210503.
- Self-Testing Quantum Random Number Generator. Physical Review Letters. 2015 Apr;114(15). Available from: http://dx.doi.org/10.1103/PhysRevLett.114.150501.
- Semi-device-independent random-number expansion without entanglement. Phys Rev A. 2011 Sep;84:034301. Available from: https://link.aps.org/doi/10.1103/PhysRevA.84.034301.
- Quantique I. Quantis QRNG (Quantum Random Number Generator) - ID Quantique;. (Accessed on 25/02/2022). https://www.idquantique.com/random-number-generation/products.
- Toshiba. https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/quantum-random-number-generators;. (Accessed on 25/02/2022). https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/quantum-random-number-generators.
- PicoQuant. Quantum Random Number Generator — PicoQuant;. (Accessed on 25/102/2022). https://www.picoquant.com/scientific/product-studies/pqrng-150-product-study.
- CTek. Quantum Random Number Source_QuantumCTek– Quantum Secures Every Bit;. (Accessed on 25/02/2022). http://www.quantum-info.com/English/product/pfour/liangzisuijishuyuan/2019/0731/579.html.
- Hierarchical axioms for quantum mechanics. Eur Phys J D. 2019 Sep;73(9):207-7. Available from: https://doi.org/10.1140/epjd/e2019-90452-2.
- Janotta P, Hinrichsen H. Generalized probability theories: what determines the structure of quantum theory? J Phys A: Math Theor. 2014 Jul;47(32):323001. Available from: http://dx.doi.org/10.1088/1751-8113/47/32/323001.
- Barrett J. Information processing in generalized probabilistic theories. Phys Rev A. 2007 Mar;75(3):032304. Available from: https://link.aps.org/doi/10.1103/PhysRevA.75.032304.
- General properties of nonsignaling theories. Phys Rev A. 2006 Jan;73(1):012112. Available from: https://link.aps.org/doi/10.1103/PhysRevA.73.012112.
- Nonlocal correlations as an information-theoretic resource. Phys Rev A. 2005 Feb;71(2):022101. Available from: https://link.aps.org/doi/10.1103/PhysRevA.71.022101.
- Shannon CE. A mathematical theory of communication. Bell System Technical Journal. 1948 Jul;27(3):379-423. Available from: https://ieeexplore.ieee.org/document/6773024.
- Quantum coherence and intrinsic randomness. Advanced Quantum Technologies. 2019;2(11):1900053. Available from: https://onlinelibrary.wiley.com/doi/10.1002/qute.201900053.
- A Brief Review of Generalized Entropies. Entropy. 2018;20(11). Available from: https://www.mdpi.com/1099-4300/20/11/813.
- Rényi A. On Measures of Entropy and Information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. vol. 4.1. Ewing, NJ, USA: University of California Press; 1961. p. 547-62. Available from: https://projecteuclid.org/proceedings/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/Chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181.
- Chor B, Goldreich O. Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity. SIAM J Comput. 2006 Jul. Available from: https://epubs.siam.org/doi/10.1137/0217015.
- Zuckerman D. General weak random sources. In: Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science. IEEE; 1990. p. 534-543vol.2. Available from: https://ieeexplore.ieee.org/document/89574.
- Renner R. Security of quantum key distribution. ETHZ; 2005. Available from: http://hdl.handle.net/20.500.11850/72791.
- The Operational Meaning of Min- and Max-Entropy. IEEE Trans Inf Theor. 2009 sep;55(9):4337–4347. Available from: https://doi.org/10.1109/TIT.2009.2025545.
- Konig R, Renner R. Sampling of Min-Entropy Relative to Quantum Knowledge. IEEE Trans Inf Theory. 2011 Jun;57(7):4760-87. Available from: https://ieeexplore.ieee.org/document/5895072.
- The complexity of estimating min-entropy; 2022. [Online; accessed 22. Feb. 2022]. Available from: https://www.springerprofessional.de/en/the-complexity-of-estimating-min-entropy/11640276.
- Lyngsø RB, Pedersen CNS. The consensus string problem and the complexity of comparing hidden Markov models. Journal of Computer and System Sciences. 2002 Nov;65(3):545-69. Available from: https://www.sciencedirect.com/science/article/pii/S0022000002000090.
- L Ecuyer P. Random number generation. Springer; 2012. Available from: https://link.springer.com/book/10.1007/978-3-642-21551-3.
- National Institute Of Standards and Technology. Security Requirements for Cryptographic Modules. CSRC |||| NIST. 2002 Dec. Available from: https://csrc.nist.gov/publications/detail/fips/140/2/final.
- Available from: http://www.gocs.de/pages/kryptologie/archiv/SP800-90b.pdf.
- Knuth DE. The art of computer programming, volume 3: (2nd ed.) sorting and searching. Addison Wesley Longman Publishing Co., Inc.; 1998. Available from: https://dl.acm.org/doi/10.5555/280635.
- LEHMER DH. Mathematical methods in large-scale computing units. Annu Comput Lab Harvard Univ. 1951;26:141-6. Available from: https://ci.nii.ac.jp/naid/20000729744/en/.
- Klein A. Linear Feedback Shift Registers. In: Stream Ciphers. London, England, UK: Springer; 2013. p. 17-58. Available from: https://doi.org/10.1007/978-1-4471-5079-4_2.
- Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul. 1998 Jan;8(1):3-30. Available from: https://dl.acm.org/doi/10.1145/272991.272995.
- Yao AC. Theory and application of trapdoor functions. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982). IEEE; 1982. p. 80-91.
- Blum M, Micali S. In: How to Generate Cryptographically Strong Sequences of Pseudo Random Bits. New York, NY, USA: Association for Computing Machinery; 2019. p. 227–240. Available from: https://doi.org/10.1145/3335741.3335751.
- A Simple Unpredictable Pseudo-Random Number Generator. SIAM Journal on Computing. 1986;15(2):364-83. Available from: https://doi.org/10.1137/0215025.
- Vazirani UV, Vazirani VV. Efficient And Secure Pseudo-Random Number Generation. In: 25th Annual Symposium onFoundations of Computer Science, 1984. IEEE; 1984. p. 458-63. Available from: https://ieeexplore.ieee.org/document/715948.
- Metropolis N, Ulam S. The Monte Carlo Method. Journal of the American Statistical Association. 1949;44(247):335-41. PMID: 18139350. Available from: https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310.
- Cryptography Engineering: Design Principles and Practical Applications. Hoboken, NJ, USA: Wiley; 2010. Available from: https://www.wiley.com/en-be/Cryptography+Engineering:+Design+Principles+and+Practical+Applications+-p-9780470474242.
- Marsaglia G. RANDOM NUMBERS FALL MAINLY IN THE PLANES. Proc Natl Acad Sci USA. 1968 Sep;61(1):25-8. Available from: http://www.pnas.org/content/61/1/25.abstract.
- Common Defects in Initialization of Pseudorandom Number Generators. ACM Trans Model Comput Simul. 2007 sep;17(4):15–es. Available from: https://doi.org/10.1145/1276927.1276928.
- Weak randomness seriously limits the security of quantum key distribution. Phys Rev A. 2012 Dec;86:062308. Available from: https://link.aps.org/doi/10.1103/PhysRevA.86.062308.
- Analysis of the Linux random number generator. In: 2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE; 2006. p. 15pp.-385. Available from: https://ieeexplore.ieee.org/document/1624027.
- Stealthy Dopant-Level Hardware Trojans. In: Cryptographic Hardware and Embedded Systems - CHES 2013. Berlin, Germany: Springer; 2013. p. 197-214. Available from: https://link.springer.com/chapter/10.1007/978-3-642-40349-1_12.
- Landauer R. Solid-state shot noise. Phys Rev B. 1993 Jun;47:16427-32. Available from: https://link.aps.org/doi/10.1103/PhysRevB.47.16427.
- Friedman H. Geiger Counter Tubes. Proc IRE. 1949 Jul;37(7):791-808. Available from: https://ieeexplore.ieee.org/document/1698087.
- Tests of alpha-, beta-, and electron capture decays for randomness. Physics Letters A. 1999;262(4):265-73. Available from: https://www.sciencedirect.com/science/article/pii/S0375960199006684.
- Radioisotope Decay Rate Based Counting Clock. In: Radioisotope Thin-Film Powered Microsystems. New York, NY, USA: Springer, New York, NY; 2010. p. 127-70. Available from: https://link.springer.com/book/10.1007/978-1-4419-6763-3.
- Vincent CH. Precautions for accuracy in the generation of truly random binary numbers. Journal of Physics E: Scientific Instruments. 1971 nov;4(11):825-8. Available from: https://doi.org/10.1088/0022-3735/4/11/007.
- Schottky W. Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Annalen der Physik. 1918;362(23):541-67. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19183622304.
- Nyquist H. Thermal Agitation of Electric Charge in Conductors. Phys Rev. 1928 Jul;32:110-3. Available from: https://link.aps.org/doi/10.1103/PhysRev.32.110.
- Johnson JB. Thermal Agitation of Electricity in Conductors. Phys Rev. 1928 Jul;32:97-109. Available from: https://link.aps.org/doi/10.1103/PhysRev.32.97.
- Quantum shot noise. Superlattices and Microstructures. 1998;23(3):901-15. Available from: https://www.sciencedirect.com/science/article/pii/S0749603697905590.
- Stipčević M. Quantum random number generators and their use in cryptography. In: 2011 Proceedings of the 34th International Convention MIPRO. IEEE; 2011. p. 1474-9. Available from: https://ieeexplore.ieee.org/document/5967293.
- Stipčević M. Fast nondeterministic random bit generator based on weakly correlated physical events. Review of Scientific Instruments. 2004;75(11):4442-9. Available from: https://doi.org/10.1063/1.1809295.
- (Accessed on 12/07/2021). https://makezine.com/projects/really-really-random-number-generator/.
- Wilber SA. Device and Method for Quantum Random Number Generation;. (Accessed on 12/07/2021). https://comscire.com/files/whitepaper/Pure_Quantum_White_Paper.pdf.
- ComScire. Generator Selection Guide Page — ComScire;. (Accessed on 25/02/2022). https://comscire.com/random-number-generator-selection-guide/.
- Measurement of transverse spin-relaxation rates in a rubidium vapor by use of spin-noise spectroscopy. Phys Rev A. 2007 Apr;75:042502. Available from: https://link.aps.org/doi/10.1103/PhysRevA.75.042502.
- Invited Review Article: Single-photon sources and detectors. Review of Scientific Instruments. 2011;82(7):071101. Available from: https://doi.org/10.1063/1.3610677.
- Buller GS, Collins RJ. Single-photon generation and detection. Measurement Science and Technology. 2009 nov;21(1):012002. Available from: https://doi.org/10.1088/0957-0233/21/1/012002.
- Violation of Bell’s Inequality under Strict Einstein Locality Conditions. Phys Rev Lett. 1998 Dec;81:5039-43. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.81.5039.
- Adjustable unbalanced quantum random-number generator. Chinese Optics Letters. 2015;13(2):021405-9. Available from: https://doi.org/10.3788/col201513.021405.
- IBM Quantum; 2022. [Online; accessed 28. Feb. 2022]. Available from: https://quantum-computing.ibm.com.
- Result.get__\__memory — Qiskit 0.19.6 documentation; 2021. [Online; accessed 27. Feb. 2022]. Available from: https://qiskit.org/documentation/stable/0.19/stubs/qiskit.result.Result.get_memory.html#qiskit.result.Result.get_memory.
- Quantum Random-number Generation and Key Sharing. J Mod Opt. 1994 Dec;41(12):2435-44. Available from: https://www.tandfonline.com/doi/abs/10.1080/09500349414552281.
- Experimental realization of quantum random number generator; 2003. [Online; accessed 28. Feb. 2022]. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5259/0000/Experimental-realization-of-quantum-random-number-generator/10.1117/12.545053.short?SSO=1.
- Stipčević M, Rogina BM. Quantum random number generator based on photonic emission in semiconductors. Rev Sci Instrum. 2007 Apr;78(4):045104. Available from: https://aip.scitation.org/doi/abs/10.1063/1.2720728.
- Wayne MA, Kwiat PG. Low-bias high-speed quantum random number generator via shaped optical pulses. Opt Express. 2010 Apr;18(9):9351-7. Available from: http://www.osapublishing.org/oe/abstract.cfm?URI=oe-18-9-9351.
- True random number generator based on discretized encoding of the time interval between photons. J Opt Soc Am A, JOSAA. 2013 Jan;30(1):124-7. Available from: https://opg.optica.org/josaa/abstract.cfm?uri=josaa-30-1-124.
- A Photonic-based Random Number Generator for Cryptographic Application. In: 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. IEEE; 2008. p. 356-61. Available from: https://ieeexplore.ieee.org/document/4617397.
- Quantum Random Number Generator Using Only One Single-Photon Detector. IEEE Photonics Technol Lett. 2014 Jan;26(9):851-3. Available from: https://ieeexplore.ieee.org/document/6729066.
- High-Speed Quantum Random Number Generation Using CMOS Photon Counting Detectors. IEEE J Sel Top Quantum Electron. 2014 Nov;21(3):23-9. Available from: https://ieeexplore.ieee.org/document/6967758.
- Quantum random-number generator based on a photon-number-resolving detector. Phys Rev A. 2011 Feb;83:023820. Available from: https://link.aps.org/doi/10.1103/PhysRevA.83.023820.
- Efficient and robust quantum random number generation by photon number detection. Applied Physics Letters. 2015;107(7):071106. Available from: https://doi.org/10.1063/1.4928732.
- Quantum Random Number Generation on a Mobile Phone. Phys Rev X. 2014 Sep;4:031056. Available from: https://link.aps.org/doi/10.1103/PhysRevX.4.031056.
- Single Photon Randomness based on a Defect Center in Diamond - Scientific Reports. Sci Rep. 2019 Dec;9(18474):1-10. Available from: https://doi.org/10.1038/s41598-019-54594-0.
- Quantum random number generator based on single-photon emitter in gallium nitride. Opt Lett. 2020 Aug;45(15):4224-7. Available from: https://opg.optica.org/ol/abstract.cfm?uri=ol-45-15-4224.
- Quantum random number generation using a hexagonal boron nitride single photon emitter. J Opt. 2020 Dec;23(1):01LT01. Available from: http://dx.doi.org/10.1088/2040-8986/abccff.
- Solid-state single-photon emitters - Nature Photonics. Nat Photonics. 2016 Oct;10(10):631-41. Available from: https://doi.org/10.1038/nphoton.2016.186.
- Quantum key distribution using gaussian-modulated coherent states. Nature. 2003 Jan;421(6920):238-41. Available from: https://doi.org/10.1038/nature01289.
- Quantum noise extraction from the interference of laser pulses in an optical quantum random number generator. Opt Express. 2020 Mar;28(5):6209-24. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-28-5-6209.
- High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt Lett. 2010 Feb;35(3):312-4. Available from: http://opg.optica.org/ol/abstract.cfm?URI=ol-35-3-312.
- True random numbers from amplified quantum vacuum. Opt Express. 2011 Oct;19(21):20665-72. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-19-21-20665.
- Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt Express. 2014 Jan;22(2):1645-54. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-22-2-1645.
- High intensity Raman interactions. Progress in Quantum Electronics. 1979;6(2):55-140. Available from: https://www.sciencedirect.com/science/article/pii/0079672779900119.
- Raymer MG, Walmsley IA. III The Quantum Coherence Properties of Stimulated Raman Scattering. vol. 28 of Progress in Optics. Elsevier; 1990. p. 181-270. Available from: https://www.sciencedirect.com/science/article/pii/S0079663808702907.
- Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica. 2016 Sep;3(9):989-94. Available from: https://opg.optica.org/optica/fulltext.cfm?uri=optica-3-9-989&id=349912.
- Multiplexed Quantum Random Number Generation. Quantum. 2019 May;3:141. Available from: https://quantum-journal.org/papers/q-2019-05-13-141.
- Silicon nitride Mach-Zehnder interferometer for on-chip quantum random number generation. J Phys Conf Ser. 2020 Dec;1695(1):012118. Available from: http://dx.doi.org/10.1088/1742-6596/1695/1/012118.
- Optical quantum random number generator. J Mod Opt. 2000 Mar;47(4):595-8. Available from: https://www.tandfonline.com/doi/abs/10.1080/09500340008233380.
- A high speed, postprocessing free, quantum random number generator. Applied Physics Letters. 2008;93(3):031109. Available from: https://doi.org/10.1063/1.2961000.
- Photon arrival time quantum random number generation. Journal of Modern Optics. 2009;56(4):516-22. Available from: https://doi.org/10.1080/09500340802553244.
- Quantum random number generator using photon-number path entanglement. Appl Opt. 2009 Mar;48(9):1774-8. Available from: http://opg.optica.org/ao/abstract.cfm?URI=ao-48-9-1774.
- US Patent 7,930,333.
- An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters. 2011;98(17):171105. Available from: https://doi.org/10.1063/1.3578456.
- Ultrafast quantum random number generation based on quantum phase fluctuations. Opt Express. 2012 May;20(11):12366-77. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-20-11-12366.
- Stipčević M, Rogina BM. Quantum random number generator based on photonic emission in semiconductors. Review of Scientific Instruments. 2007;78(4):045104. Available from: https://aip.scitation.org/doi/abs/10.1063/1.2720728.
- Wilber SA. Entropy analysis and system design for quantum random number generators in CMOS integrated circuits; 2013. Available from: https://comscire.com/files/whitepaper/Pure_Quantum_White_Paper.pdf.
- Maximization of Extractable Randomness in a Quantum Random-Number Generator. Phys Rev Applied. 2015 May;3:054004. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.3.054004.
- 5.4 Gbps real time quantum random number generator with simple implementation. Opt Express. 2016 Nov;24(24):27475-81. Available from: http://opg.optica.org/oe/abstract.cfm?URI=oe-24-24-27475.
- Extracting random numbers from quantum tunnelling through a single diode. Sci Rep. 2017 Dec;7(17879):1-6. Available from: https://doi.org/10.1038/s41598-017-18161-9.
- A Quantum Random Number Generator Based on the 100-Mbit/s Poisson Photocount Statistics. Journal of Experimental and Theoretical Physics. 2018 Jun;126(6):728-40. Available from: https://doi.org/10.1134/S1063776118060018.
- A 16×16161616\times 1616 × 16 Pixel Post-Processing Free Quantum Random Number Generator Based on SPADs. IEEE Trans Circuits Syst II. 2018 Apr;65(5):627-31. Available from: https://ieeexplore.ieee.org/document/8329139.
- A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure. Applied Sciences. 2020 Apr;10(7):2431. Available from: http://dx.doi.org/10.3390/app10072431.
- Ultra-fast real-time quantum random number generator with correlated measurement outcomes and rigorous security certification. arXiv. 2018 Dec. Available from: https://arxiv.org/abs/1812.05377v3.
- Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Engineering. 2019;1(1):e8. E8 QUE-2019-0003.R1. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.8.
- 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Review of Scientific Instruments. 2019;90(4):043105. Available from: https://doi.org/10.1063/1.5078547.
- Parallel real-time quantum random number generator. Opt Lett. 2019 Nov;44(22):5566-9. Available from: http://opg.optica.org/ol/abstract.cfm?URI=ol-44-22-5566.
- Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information. Nature Communications. 2021 Jan;12(1):605. Available from: https://doi.org/10.1038/s41467-020-20813-w.
- Random number generation from a quantum tunneling diode. Appl Phys Lett. 2021 Aug;119(7):074002. Available from: https://doi.org/10.1063/5.0055955.
- A simple low-latency real-time certifiable quantum random number generator. Nature Communications. 2021 Feb;12(1):1056. Available from: https://doi.org/10.1038/s41467-021-21069-8.
- Recommendation for the entropy sources used for random bit generation. NIST Special Publication. 2018;800(90B):102. Available from: https://csrc.nist.gov/publications/detail/sp/800-90b/final.
- Fischer V. A Closer Look at Security in Random Number Generators Design. In: Constructive Side-Channel Analysis and Secure Design. Berlin, Germany: Springer; 2012. p. 167-82. Available from: https://link.springer.com/chapter/10.1007/978-3-642-29912-4_13.
- Bucci M, Luzzi R. Design of testable random bit generators. In: CHES’05: Proceedings of the 7th international conference on Cryptographic hardware and embedded systems. Berlin, Germany: Springer-Verlag; 2005. p. 147-56. Available from: https://dl.acm.org/doi/10.1007/11545262_11.
- Randomness and genuine random number generator with self-testing functions. SNA + MC2010: Joint international conference of supercomputing in nuclear applications and Monte Carlo. Japan; 2010. Available from: http://inis.iaea.org/search/search.aspx?orig_q=RN:43020174.
- All-fiber-optic quantum random number generator. In: 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE; 2006. p. 1-2. Available from: https://ieeexplore.ieee.org/document/4628717.
- Quantum randomness certified by the uncertainty principle. Phys Rev A. 2014 Nov;90:052327. Available from: https://link.aps.org/doi/10.1103/PhysRevA.90.052327.
- Bell JS. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika. 1964 Nov;1(3):195-200. Available from: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.
- Mayers D, Yao A. Quantum Cryptography with Imperfect Apparatus. arXiv. 1998 Sep. Available from: https://arxiv.org/abs/quant-ph/9809039v1.
- Proposed Experiment to Test Local Hidden-Variable Theories. Phys Rev Lett. 1969 Oct;23(15):880-4. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.23.880.
- Miller CA, Shi Y. Universal Security for Randomness Expansion from the Spot-Checking Protocol. SIAM J Comput. 2017 Aug. Available from: https://epubs.siam.org/doi/10.1137/15M1044333.
- Random numbers certified by Bell’s theorem. Nature. 2010 Apr;464(7291):1021–1024. Available from: http://dx.doi.org/10.1038/nature09008.
- Device-independent randomness expansion against quantum side information. Nature Physics. 2021 Apr;17(4):448-51. Available from: https://doi.org/10.1038/s41567-020-01147-2.
- Experimental Realization of Device-Independent Quantum Randomness Expansion. Phys Rev Lett. 2021 Feb;126:050503. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.126.050503.
- Device-independent randomness expansion with entangled photons. Nature Physics. 2021 Apr;17(4):452-6. Available from: https://doi.org/10.1038/s41567-020-01153-4.
- Exploring Quantum Contextuality to Generate True Random Numbers. arXiv. 2013 Jan. Available from: https://arxiv.org/abs/1301.5364v2.
- Kochen S, Specker EP. The Problem of Hidden Variables in Quantum Mechanics. In: The Logico-Algebraic Approach to Quantum Mechanics: Volume I: Historical Evolution. Dordrecht, The Netherlands: Springer; 1975. p. 293-328. Available from: https://doi.org/10.1007/978-94-010-1795-4_17.
- Larsson JÅ. Loopholes in Bell inequality tests of local realism. J Phys A: Math Theor. 2014 Oct;47(42):424003. Available from: http://dx.doi.org/10.1088/1751-8113/47/42/424003.
- Colbeck R, Renner R. Free randomness can be amplified. Nature Physics. 2012 May;8(6):450–453. Available from: http://dx.doi.org/10.1038/nphys2300.
- Santha M, Vazirani UV. Generating quasi-random sequences from semi-random sources. J Comput System Sci. 1986 Aug;33(1):75-87. Available from: https://dl.acm.org/doi/10.1016/0022-0000%2886%2990044-9.
- Braunstein SL, Caves CM. Wringing out better Bell inequalities. Ann Phys. 1990 Aug;202(1):22-56. Available from: https://www.sciencedirect.com/science/article/pii/000349169090339P.
- Full randomness from arbitrarily deterministic events. Nature Communications. 2013 Oct;4(1). Available from: http://dx.doi.org/10.1038/ncomms3654.
- General randomness amplification with non-signaling security. Online] Available: https://ix cs uoregon edu/~ xiaodiwu/papers/csw16 pdf. 2016.
- Plesch M, Pivoluska M. Device-independent randomness amplification with a single device. Physics Letters A. 2014;378(40):2938-44. Available from: https://www.sciencedirect.com/science/article/pii/S0375960114008032.
- Device-independent randomness extraction from an arbitrarily weak min-entropy source. Phys Rev A. 2014 Sep;90(3):032313. Available from: https://link.aps.org/doi/10.1103/PhysRevA.90.032313.
- Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion. Phys Rev Lett. 2012 Oct;109:160404. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.109.160404.
- Semi-device-independent random number generation with flexible assumptions - npj Quantum Information. npj Quantum Inf. 2021 Mar;7(50):1-12. Available from: https://doi.org/10.1038/s41534-021-00387-1.
- Characterizing Phase Noise in a Gain-Switched Laser Diode for Quantum Random-Number Generation. Phys Rev Applied. 2021 Nov;16:054012. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.16.054012.
- Quantum random number generator using a cloud superconducting quantum computer based on source-independent protocol. Scientific Reports. 2021 Dec;11(1):23873. Available from: https://doi.org/10.1038/s41598-021-03286-9.
- Measurement-device-independent entanglement and randomness estimation in quantum networks. Phys Rev A. 2017 Apr;95:042340. Available from: https://link.aps.org/doi/10.1103/PhysRevA.95.042340.
- Certifying the Dimension of Classical and Quantum Systems in a Prepare-and-Measure Scenario with Independent Devices. Phys Rev Lett. 2014 Apr;112:140407. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.112.140407.
- Quantum Random Access Codes with Shared Randomness. arXiv. 2008 Oct. Available from: https://arxiv.org/abs/0810.2937v3.
- Mutually unbiased balanced functions and generalized random access codes. Phys Rev A. 2021 Jul;104:012420. Available from: https://link.aps.org/doi/10.1103/PhysRevA.104.012420.
- Device-Independent Tests of Classical and Quantum Dimensions. Phys Rev Lett. 2010 Nov;105:230501. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.105.230501.
- Semi-device-independent randomness certification using n→1→𝑛1n\rightarrow 1italic_n → 1 quantum random access codes. Phys Rev A. 2012 May;85(5):052308. Available from: https://link.aps.org/doi/10.1103/PhysRevA.85.052308.
- Mannalath V, Pathak A. Bounds on semi-device-independent quantum random-number expansion capabilities. Phys Rev A. 2022 Feb;105:022435. Available from: https://link.aps.org/doi/10.1103/PhysRevA.105.022435.
- Hardy L. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys Rev Lett. 1992 May;68(20):2981-4. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.68.2981.
- Cabello A. Bell’s theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states. Phys Rev A. 2002 Feb;65(3):032108. Available from: https://link.aps.org/doi/10.1103/PhysRevA.65.032108.
- Device- and semi–device-independent random numbers based on noninequality paradox. Phys Rev A. 2015 Aug;92(2):022327. Available from: https://link.aps.org/doi/10.1103/PhysRevA.92.022327.
- Pan AK. Semi-device-independent randomness certification using Mermin’s proof of Kochen–Specker contextuality. Eur Phys J D. 2021 Mar;75(3):98-8. Available from: https://doi.org/10.1140/epjd/s10053-021-00105-8.
- Mermin ND. Simple unified form for the major no-hidden-variables theorems. Phys Rev Lett. 1990 Dec;65(27):3373-6. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.65.3373.
- Available from:https://quantum-journal.org/papers/q-2017-11-18-33
- Van Himbeeck T, Pironio S. Correlations and randomness generation based on energy constraints. arXiv. 2019 May. Available from: https://arxiv.org/abs/1905.09117v1.
- Semi-device independent randomness generation based on quantum state’s indistinguishability. Quantum Sci Technol. 2021 Sep;6(4):045026. Available from: http://dx.doi.org/10.1088/2058-9565/ac2047.
- Semi-device-independent randomness from d𝑑ditalic_d-outcome continuous-variable detection. Phys Rev A. 2021 Dec;104(6):062424. Available from: https://link.aps.org/doi/10.1103/PhysRevA.104.062424.
- Fast self-testing quantum random number generator based on homodyne detection. Appl Phys Lett. 2020 Jun;116(26):264004. Available from: https://doi.org/10.1063/5.0011479.
- Self-testing quantum random-number generator based on an energy bound. Phys Rev A. 2019 Dec;100:062338. Available from: https://link.aps.org/doi/10.1103/PhysRevA.100.062338.
- Available from: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.050501.
- Semi-device-independent randomness expansion with partially free random sources. Phys Rev A. 2015 Aug;92(2):022331. Available from: https://link.aps.org/doi/10.1103/PhysRevA.92.022331.
- Senno G, Acín A. Semi-device-independent full randomness amplification based on energy bounds. arXiv. 2021 Aug. Available from: https://arxiv.org/abs/2108.09100v1.
- Source-Independent Quantum Random Number Generation. Phys Rev X. 2016 Feb;6:011020. Available from: https://link.aps.org/doi/10.1103/PhysRevX.6.011020.
- Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination. Phys Rev Applied. 2017 May;7:054018. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.7.054018.
- Source-Device-Independent Ultrafast Quantum Random Number Generation. Phys Rev Lett. 2017 Feb;118:060503. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.118.060503.
- Device-independent quantum random-number generation. Nature. 2018 Oct;562(7728):548-51. Available from: https://doi.org/10.1038/s41586-018-0559-3.
- Quantum random number generation with uncharacterized laser and sunlight. npj Quantum Information. 2019 Nov;5(1):97. Available from: https://doi.org/10.1038/s41534-019-0208-1.
- Real-Time Source-Independent Quantum Random-Number Generator with Squeezed States. Phys Rev Appl. 2019 Sep;12(3):034017. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.12.034017.
- Certified Quantum Random Numbers from Untrusted Light. Phys Rev X. 2020 Dec;10:041048. Available from: https://link.aps.org/doi/10.1103/PhysRevX.10.041048.
- Semi-Device-Independent Heterodyne-Based Quantum Random-Number Generator. Phys Rev Applied. 2021 Mar;15:034034. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.15.034034.
- Stapp HP. The Copenhagen Interpretation. Am J Phys. 2005 Jul;40(8):1098. Available from: https://aapt.scitation.org/doi/10.1119/1.1986768.
- Popescu S, Rohrlich D. Quantum nonlocality as an axiom. Found Phys. 1994 Mar;24(3):379-85. Available from: https://doi.org/10.1007/BF02058098.
- Cirel’son BS. Quantum generalizations of Bell’s inequality. Lett Math Phys. 1980 Mar;4(2):93-100. Available from: https://doi.org/10.1007/BF00417500.
- Information causality as a physical principle - Nature. Nature. 2009 Oct;461(7267):1101-4. Available from: https://doi.org/10.1038/nature08400.
- Hardy L. Quantum Theory From Five Reasonable Axioms. arXiv. 2001 Jan. Available from: https://arxiv.org/abs/quant-ph/0101012v4.
- Nonquantum Entanglement Resolves a Basic Issue in Polarization Optics. Phys Rev Lett. 2010 Jan;104:023901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.104.023901.
- On the origin of nonclassicality in single systems. J Phys A: Math Theor. 2017 Oct;50(46):465303. Available from: http://dx.doi.org/10.1088/1751-8121/aa8d29.
- Labs Q. Quantum Random Number Generator — QuintessenceLabs;. (Accessed on 25/02/2022). https://www.quintessencelabs.com/products/qstream-quantum-true-random-number-generator/.
- eMotion. Products - Quantum eMotion Inc.;. (Accessed on 25/02/2022). https://www.quantumemotion.com/products/.
- EYL. Quantum Random Number Generator – EYL;. (Accessed on 25/02/2022). https://www.eylpartners.com/index.php/product-overview/?ckattempt=1.
- quRNG. quRNG_datasheet.cdr;. (Accessed on 25/02/2022). https://www.qd-latam.com/_libs/dwns/639.pdf.
- MPD. Micro Photon Devices - Quantum Random Number;. (Accessed on 25/02/2022). http://www.micro-photon-devices.com/Docs/Datasheet/QRNG.pdf.
- quside. quside;. (Accessed on 25/02/2022). https://quside.com.
- QNU. Quantum Random Number Generator (QRNG) - QNu Labs - How it works?; 2021. [Online; accessed 26. Feb. 2022]. Available from: https://www.qnulabs.com/tropos-quantum-random-number-generator.