Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load (2203.00197v3)

Published 1 Mar 2022 in eess.SY and cs.SY

Abstract: The increasing electricity demand and the need for clean and renewable energy resources to satisfy this demand in a cost-effective manner, imposes new challenges on researchers and developers to maximize the output of these renewable resources at all times. However, the increasing penetration of renewable energy into the grid imposes new challenges on the grid operators. All of these challenges and issues gave rise to the need of Maximum Power Point Tracker (MPPT) and Flexible Power Point Trackers (FPPT) in order to maximize the power extracted from Photovoltaic (PV) systems and meet the grid operation constraints. Existing solutions for these algorithms do not take into consideration the very high dynamical nature of weather conditions that affects the output power that can be extracted from the PV modules, whereas in practice, the weather changes dynamically faster than what the algorithms time needed to converge. The work in this document is an attempt to address this shortcoming address shortcoming by utilizing online optimization algorithms for this purpose. Numerical analysis and verification are presented in the document. Code for the algorithms can be found at this link

Citations (1)

Summary

We haven't generated a summary for this paper yet.