Papers
Topics
Authors
Recent
Search
2000 character limit reached

Limit distribution theory for smooth $p$-Wasserstein distances

Published 1 Mar 2022 in math.PR, math.ST, and stat.TH | (2203.00159v1)

Abstract: The Wasserstein distance is a metric on a space of probability measures that has seen a surge of applications in statistics, machine learning, and applied mathematics. However, statistical aspects of Wasserstein distances are bottlenecked by the curse of dimensionality, whereby the number of data points needed to accurately estimate them grows exponentially with dimension. Gaussian smoothing was recently introduced as a means to alleviate the curse of dimensionality, giving rise to a parametric convergence rate in any dimension, while preserving the Wasserstein metric and topological structure. To facilitate valid statistical inference, in this work, we develop a comprehensive limit distribution theory for the empirical smooth Wasserstein distance. The limit distribution results leverage the functional delta method after embedding the domain of the Wasserstein distance into a certain dual Sobolev space, characterizing its Hadamard directional derivative for the dual Sobolev norm, and establishing weak convergence of the smooth empirical process in the dual space. To estimate the distributional limits, we also establish consistency of the nonparametric bootstrap. Finally, we use the limit distribution theory to study applications to generative modeling via minimum distance estimation with the smooth Wasserstein distance, showing asymptotic normality of optimal solutions for the quadratic cost.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.