Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GA+DDPG+HER: Genetic Algorithm-Based Function Optimizer in Deep Reinforcement Learning for Robotic Manipulation Tasks (2203.00141v2)

Published 28 Feb 2022 in cs.RO

Abstract: Agents can base decisions made using reinforcement learning (RL) on a reward function. The selection of values for the learning algorithm parameters can, nevertheless, have a substantial impact on the overall learning process. In order to discover values for the learning parameters that are close to optimal, we extended our previously proposed genetic algorithm-based Deep Deterministic Policy Gradient and Hindsight Experience Replay approach (referred to as GA+DDPG+HER) in this study. On the robotic manipulation tasks of FetchReach, FetchSlide, FetchPush, FetchPick&Place, and DoorOpening, we applied the GA+DDPG+HER methodology. Our technique GA+DDPG+HER was also used in the AuboReach environment with a few adjustments. Our experimental analysis demonstrates that our method produces performance that is noticeably better and occurs faster than the original algorithm. We also offer proof that GA+DDPG+HER beat the current approaches. The final results support our assertion and offer sufficient proof that automating the parameter tuning procedure is crucial and does cut down learning time by as much as 57%.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com