Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The dangers in algorithms learning humans' values and irrationalities (2202.13985v2)

Published 28 Feb 2022 in cs.AI

Abstract: For an AI to be aligned with human values (or human preferences), it must first learn those values. AI systems that are trained on human behavior, risk miscategorising human irrationalities as human values -- and then optimising for these irrationalities. Simply learning human values still carries risks: AI learning them will inevitably also gain information on human irrationalities and human behaviour/policy. Both of these can be dangerous: knowing human policy allows an AI to become generically more powerful (whether it is partially aligned or not aligned at all), while learning human irrationalities allows it to exploit humans without needing to provide value in return. This paper analyses the danger in developing artificial intelligence that learns about human irrationalities and human policy, and constructs a model recommendation system with various levels of information about human biases, human policy, and human values. It concludes that, whatever the power and knowledge of the AI, it is more dangerous for it to know human irrationalities than human values. Thus it is better for the AI to learn human values directly, rather than learning human biases and then deducing values from behaviour.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rebecca Gorman (7 papers)
  2. Stuart Armstrong (16 papers)
Citations (2)