Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Signature-based Algorithm for Computing the Nondegenerate Locus of a Polynomial System

Published 28 Feb 2022 in cs.SC | (2202.13784v2)

Abstract: Polynomial system solving arises in many application areas to model non-linear geometric properties. In such settings, polynomial systems may come with degeneration which the end-user wants to exclude from the solution set. The nondegenerate locus of a polynomial system is the set of points where the codimension of the solution set matches the number of equations. Computing the nondegenerate locus is classically done through ideal-theoretic operations in commutative algebra such as saturation ideals or equidimensional decompositions to extract the component of maximal codimension. By exploiting the algebraic features of signature-based Gr\"obner basis algorithms we design an algorithm which computes a Gr\"obner basis of the equations describing the closure of the nondegenerate locus of a polynomial system, without computing first a Gr\"obner basis for the whole polynomial system.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.