Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Lingual Text Classification with Multilingual Distillation and Zero-Shot-Aware Training (2202.13654v1)

Published 28 Feb 2022 in cs.CL

Abstract: Multilingual pre-trained LLMs (MPLMs) not only can handle tasks in different languages but also exhibit surprising zero-shot cross-lingual transferability. However, MPLMs usually are not able to achieve comparable supervised performance on rich-resource languages compared to the state-of-the-art monolingual pre-trained models. In this paper, we aim to improve the multilingual model's supervised and zero-shot performance simultaneously only with the resources from supervised languages. Our approach is based on transferring knowledge from high-performance monolingual models with a teacher-student framework. We let the multilingual model learn from multiple monolingual models simultaneously. To exploit the model's cross-lingual transferability, we propose MBLM (multi-branch multilingual LLM), a model built on the MPLMs with multiple language branches. Each branch is a stack of transformers. MBLM is trained with the zero-shot-aware training strategy that encourages the model to learn from the mixture of zero-shot representations from all the branches. The results on two cross-lingual classification tasks show that, with only the task's supervised data used, our method improves both the supervised and zero-shot performance of MPLMs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ziqing Yang (29 papers)
  2. Yiming Cui (80 papers)
  3. Zhigang Chen (102 papers)
  4. Shijin Wang (69 papers)
Citations (3)