Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are Big Recommendation Models Fair to Cold Users? (2202.13607v1)

Published 28 Feb 2022 in cs.IR

Abstract: Big models are widely used by online recommender systems to boost recommendation performance. They are usually learned on historical user behavior data to infer user interest and predict future user behaviors (e.g., clicks). In fact, the behaviors of heavy users with more historical behaviors can usually provide richer clues than cold users in interest modeling and future behavior prediction. Big models may favor heavy users by learning more from their behavior patterns and bring unfairness to cold users. In this paper, we study whether big recommendation models are fair to cold users. We empirically demonstrate that optimizing the overall performance of big recommendation models may lead to unfairness to cold users in terms of performance degradation. To solve this problem, we propose a BigFair method based on self-distillation, which uses the model predictions on original user data as a teacher to regularize predictions on augmented data with randomly dropped user behaviors, which can encourage the model to fairly capture interest distributions of heavy and cold users. Experiments on two datasets show that BigFair can effectively improve the performance fairness of big recommendation models on cold users without harming the performance on heavy users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chuhan Wu (87 papers)
  2. Fangzhao Wu (81 papers)
  3. Tao Qi (43 papers)
  4. Yongfeng Huang (110 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.