Papers
Topics
Authors
Recent
Search
2000 character limit reached

Federated Online Sparse Decision Making

Published 27 Feb 2022 in stat.ML and cs.LG | (2202.13448v2)

Abstract: This paper presents a novel federated linear contextual bandits model, where individual clients face different K-armed stochastic bandits with high-dimensional decision context and coupled through common global parameters. By leveraging the sparsity structure of the linear reward , a collaborative algorithm named \texttt{Fedego Lasso} is proposed to cope with the heterogeneity across clients without exchanging local decision context vectors or raw reward data. \texttt{Fedego Lasso} relies on a novel multi-client teamwork-selfish bandit policy design, and achieves near-optimal regrets for shared parameter cases with logarithmic communication costs. In addition, a new conceptual tool called federated-egocentric policies is introduced to delineate exploration-exploitation trade-off. Experiments demonstrate the effectiveness of the proposed algorithms on both synthetic and real-world datasets.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.