Papers
Topics
Authors
Recent
Search
2000 character limit reached

Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering

Published 27 Feb 2022 in cs.CL | (2202.13296v2)

Abstract: Recent works on knowledge base question answering (KBQA) retrieve subgraphs for easier reasoning. A desired subgraph is crucial as a small one may exclude the answer but a large one might introduce more noises. However, the existing retrieval is either heuristic or interwoven with the reasoning, causing reasoning on the partial subgraphs, which increases the reasoning bias when the intermediate supervision is missing. This paper proposes a trainable subgraph retriever (SR) decoupled from the subsequent reasoning process, which enables a plug-and-play framework to enhance any subgraph-oriented KBQA model. Extensive experiments demonstrate SR achieves significantly better retrieval and QA performance than existing retrieval methods. Via weakly supervised pre-training as well as the end-to-end fine-tuning, SRl achieves new state-of-the-art performance when combined with NSM, a subgraph-oriented reasoner, for embedding-based KBQA methods.

Citations (95)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.