Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exact Consistent Tangent Stiffness Matrix for a Second Gradient Model for Porous Plastic Solids: Derivation and Assessment (2202.13266v1)

Published 27 Feb 2022 in math.NA and cs.NA

Abstract: It is well known that the use of a consistent tangent stiffness matrix is critical to obtain quadratic convergence of the global Newton iterations in the finite element simulations of problems involving elasto-plastic deformation of metals, especially for large scale metallic structure problems. In this paper we derive an exact consistent stiffness matrix for a porous material model, the GLPD model developed by Gologanu, Leblond, Perrin, and Devaux for ductile fracture for porous metals based on generalized continuum mechanics assumptions. Full expressions for the derivatives of the Cauchy stress tensor and the generalized moments stress tensor the model involved are provided. The effectiveness and robustness of the proposed tangent stiffness moduli are assessed by applying the formulation in the finite element simulations of ductile fracture problems. Comparisons between the performance our stiffness matrix and the standard ones are also provided.

Summary

We haven't generated a summary for this paper yet.