Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What ODE-Approximation Schemes of Time-Delay Systems Reveal about Lyapunov-Krasovskii Functionals (2202.13122v6)

Published 26 Feb 2022 in eess.SY and cs.SY

Abstract: The article proposes an approach to complete-type and related Lyapunov-Krasovskii functionals that neither requires knowledge of the delay-Lyapunov matrix function nor does it involve linear matrix inequalities. The approach is based on ordinary differential equations (ODEs) that approximate the time-delay system. The ODEs are derived via spectral methods, e.g., the Chebyshev collocation method (also called pseudospectral discretization) or the Legendre tau method. A core insight is that the Lyapunov-Krasovskii theorem resembles a theorem for Lyapunov-Rumyantsev partial stability in ODEs. For the linear approximating ODE, only a Lyapunov equation has to be solved to obtain a partial Lyapunov function. The latter approximates the Lyapunov-Krasovskii functional. Results are validated by applying Clenshaw-Curtis and Gauss quadrature to a semi-analytical result of the functional, yielding a comparable finite-dimensional approximation. In particular, the article provides a formula for a tight quadratic lower bound, which is important in applications. Examples confirm that this new bound is significantly less conservative than known results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.