Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language-Independent Speaker Anonymization Approach using Self-Supervised Pre-Trained Models (2202.13097v3)

Published 26 Feb 2022 in cs.SD and eess.AS

Abstract: Speaker anonymization aims to protect the privacy of speakers while preserving spoken linguistic information from speech. Current mainstream neural network speaker anonymization systems are complicated, containing an F0 extractor, speaker encoder, automatic speech recognition acoustic model (ASR AM), speech synthesis acoustic model and speech waveform generation model. Moreover, as an ASR AM is language-dependent, trained on English data, it is hard to adapt it into another language. In this paper, we propose a simpler self-supervised learning (SSL)-based method for language-independent speaker anonymization without any explicit language-dependent model, which can be easily used for other languages. Extensive experiments were conducted on the VoicePrivacy Challenge 2020 datasets in English and AISHELL-3 datasets in Mandarin to demonstrate the effectiveness of our proposed SSL-based language-independent speaker anonymization method.

Citations (22)

Summary

We haven't generated a summary for this paper yet.