Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-isothermal non-Newtonian fluids: the stationary case

Published 26 Feb 2022 in math.AP, cs.NA, and math.NA | (2202.13075v2)

Abstract: The stationary Navier-Stokes equations for a non-Newtonian incompressible fluid are coupled with the stationary heat equation and subject to Dirichlet type boundary conditions. The viscosity is supposed to depend on the temperature and the stress depends on the strain through a suit-able power law depending on $p \in (1,2)$ (shear thinning case). For this problem we establish the existence of a weak solution as well as we prove some regularity results both for the Navier-Stokes and the Stokes cases. Then, the latter case with the Carreau power law is approximated through a FEM scheme and some error estimates are obtained. Such estimates are then validated through some two-dimensional numerical experiments.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.