Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-isothermal non-Newtonian fluids: the stationary case (2202.13075v1)

Published 26 Feb 2022 in math.AP, cs.NA, and math.NA

Abstract: The stationary Navier-Stokes equations for a non-Newtonian incompressible fluid are coupled with the stationary heat equation and subject to Dirichlet type boundary conditions. The viscosity is supposed to depend on the temperature and the stress depends on the strain through a suit-able power law depending on $p \in (1,2)$ (shear thinning case). For this problem we establish the existence of a weak solution as well as we prove some regularity results both for the Navier-Stokes and the Stokes cases.Then, the latter case with the Carreau power law is approximated through a FEM scheme and some error estimates are obtained. Such estimates are then validated through some two-dimensional numerical experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.